{"nbformat":4,"nbformat_minor":0,"metadata":{"colab":{"provenance":[],"authorship_tag":"ABX9TyM92DNghoocqJmM9Kl5DupF"},"kernelspec":{"name":"python3","display_name":"Python 3"},"language_info":{"name":"python"}},"cells":[{"cell_type":"markdown","source":["# Analyse some metagenomics data to identify corelated contigs\n","\n","You can copy and paste these commands into Google Colab, and run this notebook to identify which contigs might belong together, eg. come from the same genomes\n","\n","\n","## Step 1. Import some libaries"],"metadata":{"id":"DWHYKg9VL-BJ"}},{"cell_type":"code","execution_count":3,"metadata":{"id":"4R6y2YvsNXs8","executionInfo":{"status":"ok","timestamp":1730774725587,"user_tz":-660,"elapsed":484,"user":{"displayName":"Rob Edwards","userId":"17780279723170493443"}}},"outputs":[],"source":["import os\n","import sys\n","import pandas as pd\n","import seaborn as sns\n","import matplotlib.pyplot as plt\n","import numpy as np\n"]},{"cell_type":"markdown","source":["If you have the data file locally, you can upload it to colab. Otherwise, you can connect Google drive and read the file from there!"],"metadata":{"id":"Em2obIOgMWG5"}},{"cell_type":"code","source":["# df = pd.read_csv('788707_20180129_S_coverage.tsv', sep=\"\\t\", index_col=0)\n","\n","from google.colab import drive\n","drive.mount('/content/drive')\n","\n","df = pd.read_csv('drive/MyDrive/Workshops/788707_20180129_S_coverage.tsv', sep=\"\\t\", index_col=0)\n","df"],"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":473},"id":"EHsLgNAUUo4H","executionInfo":{"status":"ok","timestamp":1730774759801,"user_tz":-660,"elapsed":30619,"user":{"displayName":"Rob Edwards","userId":"17780279723170493443"}},"outputId":"74b73749-048a-445d-e5c5-8df0d6c8ab4c"},"execution_count":4,"outputs":[{"output_type":"stream","name":"stdout","text":["Mounted at /content/drive\n"]},{"output_type":"execute_result","data":{"text/plain":[" 788707_20171213_S 788707_20180129_S 788707_20180313_S \\\n","contig \n","k141_0 0.000000 4.20440 0.00000 \n","k141_1 0.000000 3.85587 9.21708 \n","k141_10 0.000000 2.14286 0.00000 \n","k141_100 0.000000 2.86104 0.00000 \n","k141_1000 0.000000 2.42775 0.00000 \n","... ... ... ... \n","k141_9995 0.000000 5.15532 3.16151 \n","k141_9996 0.000000 3.68349 0.00000 \n","k141_9997 0.170054 6.28332 11.11980 \n","k141_9998 0.000000 2.03607 0.00000 \n","k141_9999 0.000000 1.92308 0.00000 \n","\n"," 788707_20181126_S \n","contig \n","k141_0 0.00000 \n","k141_1 1.77046 \n","k141_10 0.00000 \n","k141_100 0.00000 \n","k141_1000 0.00000 \n","... ... \n","k141_9995 0.00000 \n","k141_9996 0.00000 \n","k141_9997 0.13688 \n","k141_9998 0.00000 \n","k141_9999 0.00000 \n","\n","[14353 rows x 4 columns]"],"text/html":["\n","
\n","
\n","\n","\n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n","
788707_20171213_S788707_20180129_S788707_20180313_S788707_20181126_S
contig
k141_00.0000004.204400.000000.00000
k141_10.0000003.855879.217081.77046
k141_100.0000002.142860.000000.00000
k141_1000.0000002.861040.000000.00000
k141_10000.0000002.427750.000000.00000
...............
k141_99950.0000005.155323.161510.00000
k141_99960.0000003.683490.000000.00000
k141_99970.1700546.2833211.119800.13688
k141_99980.0000002.036070.000000.00000
k141_99990.0000001.923080.000000.00000
\n","

14353 rows × 4 columns

\n","
\n","
\n","\n","
\n"," \n","\n"," \n","\n"," \n","
\n","\n","\n","
\n"," \n","\n","\n","\n"," \n","
\n","\n","
\n"," \n"," \n"," \n","
\n","\n","
\n","
\n"],"application/vnd.google.colaboratory.intrinsic+json":{"type":"dataframe","variable_name":"df","summary":"{\n \"name\": \"df\",\n \"rows\": 14353,\n \"fields\": [\n {\n \"column\": \"contig\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 14353,\n \"samples\": [\n \"k141_8258\",\n \"k141_8481\",\n \"k141_14259\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"788707_20171213_S\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.07887944904885445,\n \"min\": 0.0,\n \"max\": 3.08707,\n \"num_unique_values\": 269,\n \"samples\": [\n 0.318681,\n 0.158769,\n 0.309438\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"788707_20180129_S\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1.7888292595540174,\n \"min\": 0.0,\n \"max\": 75.8326,\n \"num_unique_values\": 13807,\n \"samples\": [\n 2.34218,\n 4.34081,\n 3.736\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"788707_20180313_S\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 2.766472757293545,\n \"min\": 0.0,\n \"max\": 66.0866,\n \"num_unique_values\": 5207,\n \"samples\": [\n 8.69084,\n 9.95655,\n 3.39951\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"788707_20181126_S\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.25626935789856364,\n \"min\": 0.0,\n \"max\": 5.20091,\n \"num_unique_values\": 1542,\n \"samples\": [\n 0.379603,\n 0.486553,\n 1.32609\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}"}},"metadata":{},"execution_count":4}]},{"cell_type":"code","source":["# read the lengths of the sequences\n","\n","seqlengths = pd.read_csv('drive/MyDrive/Workshops/final.contigs.lengths.tsv', sep=\"\\t\", index_col=0, header=None, names=['contig', 'length'])\n","seqlengths"],"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":455},"id":"2PXpBVDNS5bS","executionInfo":{"status":"ok","timestamp":1730776452094,"user_tz":-660,"elapsed":620,"user":{"displayName":"Rob Edwards","userId":"17780279723170493443"}},"outputId":"1dcebe8b-cacf-4b06-e98f-f6814dc71981"},"execution_count":20,"outputs":[{"output_type":"execute_result","data":{"text/plain":[" length\n","contig \n","k141_1800 347\n","k141_12597 379\n","k141_8999 397\n","k141_0 455\n","k141_10798 565\n","... ...\n","k141_3595 2053\n","k141_3596 3022\n","k141_3597 471\n","k141_3598 472\n","k141_3599 380\n","\n","[14353 rows x 1 columns]"],"text/html":["\n","
\n","
\n","\n","\n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n","
length
contig
k141_1800347
k141_12597379
k141_8999397
k141_0455
k141_10798565
......
k141_35952053
k141_35963022
k141_3597471
k141_3598472
k141_3599380
\n","

14353 rows × 1 columns

\n","
\n","
\n","\n","
\n"," \n","\n"," \n","\n"," \n","
\n","\n","\n","
\n"," \n","\n","\n","\n"," \n","
\n","\n","
\n"," \n"," \n"," \n","
\n","\n","
\n","
\n"],"application/vnd.google.colaboratory.intrinsic+json":{"type":"dataframe","variable_name":"seqlengths","summary":"{\n \"name\": \"seqlengths\",\n \"rows\": 14353,\n \"fields\": [\n {\n \"column\": \"contig\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 14353,\n \"samples\": [\n \"k141_8909\",\n \"k141_12500\",\n \"k141_2311\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"length\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 744,\n \"min\": 200,\n \"max\": 14092,\n \"num_unique_values\": 2211,\n \"samples\": [\n 714,\n 1284,\n 4003\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}"}},"metadata":{},"execution_count":20}]},{"cell_type":"markdown","source":["### Filter the reads\n","\n","In this example, we filter this data set to ensure that the sample `788707_20171213_S` has at least one hit."],"metadata":{"id":"ErMof-wLNaWQ"}},{"cell_type":"code","source":["dfs = df[df['788707_20171213_S'] > 0]\n","dfs"],"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":455},"id":"iFCrHoarU5Mt","executionInfo":{"status":"ok","timestamp":1730774767910,"user_tz":-660,"elapsed":490,"user":{"displayName":"Rob Edwards","userId":"17780279723170493443"}},"outputId":"c49bba00-6558-4ab3-c4cb-cf4f8763cf8b"},"execution_count":5,"outputs":[{"output_type":"execute_result","data":{"text/plain":[" 788707_20171213_S 788707_20180129_S 788707_20180313_S \\\n","contig \n","k141_10016 0.349473 8.00344 8.01700 \n","k141_10116 0.104002 5.24973 5.87481 \n","k141_10189 0.317612 5.15224 5.75403 \n","k141_10215 0.281800 1.88650 0.00000 \n","k141_10223 0.314713 6.19827 8.20220 \n","... ... ... ... \n","k141_9786 0.216080 4.71022 6.42379 \n","k141_9827 0.051166 5.59172 8.86182 \n","k141_9878 0.723157 5.43338 6.00259 \n","k141_993 0.291545 4.95044 0.00000 \n","k141_9997 0.170054 6.28332 11.11980 \n","\n"," 788707_20181126_S \n","contig \n","k141_10016 0.482462 \n","k141_10116 0.155361 \n","k141_10189 0.226567 \n","k141_10215 0.000000 \n","k141_10223 0.141096 \n","... ... \n","k141_9786 0.000000 \n","k141_9827 0.327532 \n","k141_9878 0.675291 \n","k141_993 0.000000 \n","k141_9997 0.136880 \n","\n","[268 rows x 4 columns]"],"text/html":["\n","
\n","
\n","\n","\n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n","
788707_20171213_S788707_20180129_S788707_20180313_S788707_20181126_S
contig
k141_100160.3494738.003448.017000.482462
k141_101160.1040025.249735.874810.155361
k141_101890.3176125.152245.754030.226567
k141_102150.2818001.886500.000000.000000
k141_102230.3147136.198278.202200.141096
...............
k141_97860.2160804.710226.423790.000000
k141_98270.0511665.591728.861820.327532
k141_98780.7231575.433386.002590.675291
k141_9930.2915454.950440.000000.000000
k141_99970.1700546.2833211.119800.136880
\n","

268 rows × 4 columns

\n","
\n","
\n","\n","
\n"," \n","\n"," \n","\n"," \n","
\n","\n","\n","
\n"," \n","\n","\n","\n"," \n","
\n","\n","
\n"," \n"," \n"," \n","
\n","\n","
\n","
\n"],"application/vnd.google.colaboratory.intrinsic+json":{"type":"dataframe","variable_name":"dfs","summary":"{\n \"name\": \"dfs\",\n \"rows\": 268,\n \"fields\": [\n {\n \"column\": \"contig\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 268,\n \"samples\": [\n \"k141_2836\",\n \"k141_7477\",\n \"k141_1109\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"788707_20171213_S\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.42239103932876476,\n \"min\": 0.0259931,\n \"max\": 3.08707,\n \"num_unique_values\": 268,\n \"samples\": [\n 0.158769,\n 0.425806,\n 0.159364\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"788707_20180129_S\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 2.5270121279469313,\n \"min\": 1.51058,\n \"max\": 32.9056,\n \"num_unique_values\": 268,\n \"samples\": [\n 5.35146,\n 6.10968,\n 7.7971\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"788707_20180313_S\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 4.691730905570088,\n \"min\": 0.0,\n \"max\": 49.0159,\n \"num_unique_values\": 224,\n \"samples\": [\n 6.74048,\n 8.59778,\n 17.3116\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"788707_20181126_S\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.5677001731032064,\n \"min\": 0.0,\n \"max\": 4.6014,\n \"num_unique_values\": 165,\n \"samples\": [\n 0.782876,\n 0.118786,\n 0.5\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}"}},"metadata":{},"execution_count":5}]},{"cell_type":"markdown","source":["We are going to reshape this data frame so we can plot the samples on the x-axis and the depth on the y-axis."],"metadata":{"id":"PCHC2dvZN4CE"}},{"cell_type":"code","source":["melted_df = dfs.reset_index().melt(id_vars='contig', var_name='Sample', value_name='Depth')\n","melted_df"],"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":423},"id":"lT_KZgSBVzPl","executionInfo":{"status":"ok","timestamp":1730774846158,"user_tz":-660,"elapsed":501,"user":{"displayName":"Rob Edwards","userId":"17780279723170493443"}},"outputId":"9db0242e-e80e-4274-f5e9-c1d6b5f8c506"},"execution_count":6,"outputs":[{"output_type":"execute_result","data":{"text/plain":[" contig Sample Depth\n","0 k141_10016 788707_20171213_S 0.349473\n","1 k141_10116 788707_20171213_S 0.104002\n","2 k141_10189 788707_20171213_S 0.317612\n","3 k141_10215 788707_20171213_S 0.281800\n","4 k141_10223 788707_20171213_S 0.314713\n","... ... ... ...\n","1067 k141_9786 788707_20181126_S 0.000000\n","1068 k141_9827 788707_20181126_S 0.327532\n","1069 k141_9878 788707_20181126_S 0.675291\n","1070 k141_993 788707_20181126_S 0.000000\n","1071 k141_9997 788707_20181126_S 0.136880\n","\n","[1072 rows x 3 columns]"],"text/html":["\n","
\n","
\n","\n","\n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n","
contigSampleDepth
0k141_10016788707_20171213_S0.349473
1k141_10116788707_20171213_S0.104002
2k141_10189788707_20171213_S0.317612
3k141_10215788707_20171213_S0.281800
4k141_10223788707_20171213_S0.314713
............
1067k141_9786788707_20181126_S0.000000
1068k141_9827788707_20181126_S0.327532
1069k141_9878788707_20181126_S0.675291
1070k141_993788707_20181126_S0.000000
1071k141_9997788707_20181126_S0.136880
\n","

1072 rows × 3 columns

\n","
\n","
\n","\n","
\n"," \n","\n"," \n","\n"," \n","
\n","\n","\n","
\n"," \n","\n","\n","\n"," \n","
\n","\n","
\n"," \n"," \n"," \n","
\n","\n","
\n","
\n"],"application/vnd.google.colaboratory.intrinsic+json":{"type":"dataframe","variable_name":"melted_df","summary":"{\n \"name\": \"melted_df\",\n \"rows\": 1072,\n \"fields\": [\n {\n \"column\": \"contig\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 268,\n \"samples\": [\n \"k141_2836\",\n \"k141_7477\",\n \"k141_1109\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Sample\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 4,\n \"samples\": [\n \"788707_20180129_S\",\n \"788707_20181126_S\",\n \"788707_20171213_S\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Depth\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 3.766172050500534,\n \"min\": 0.0,\n \"max\": 49.0159,\n \"num_unique_values\": 922,\n \"samples\": [\n 3.9705,\n 4.14434,\n 5.75403\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}"}},"metadata":{},"execution_count":6}]},{"cell_type":"markdown","source":["And now we plot _all_ the raw data."],"metadata":{"id":"WtXuTVLmOF4x"}},{"cell_type":"code","source":["sns.lineplot(data=melted_df, x='Sample', y='Depth', hue='contig', legend=False)\n"],"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":467},"id":"K2rEYhU1V4NU","executionInfo":{"status":"ok","timestamp":1730761201202,"user_tz":-660,"elapsed":3541,"user":{"displayName":"Rob Edwards","userId":"17780279723170493443"}},"outputId":"3a56f5b7-2ffb-4eee-b241-84a7bf134488"},"execution_count":null,"outputs":[{"output_type":"execute_result","data":{"text/plain":[""]},"metadata":{},"execution_count":23},{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAAAmgAAAGwCAYAAAAdapmWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3gc1bnH8e/MdpVd9WJZxU3ucse9YkNIgBAgCTX0JIQQQknh3ptAcm9CegIh9Bp6SCCJSSHY4G4D7l3NlmRblmS1Vdk+c+4fK8uWC7jIXsl6P8+zj2TtavaVZO38dN4z52hKKYUQQgghhOgx9FgXIIQQQgghupKAJoQQQgjRw0hAE0IIIYToYSSgCSGEEEL0MBLQhBBCCCF6GAloQgghhBA9jAQ0IYQQQogexhrrAs4m0zSprq4mMTERTdNiXY4QQgghToBSitbWVvr164eu942xpT4V0Kqrq8nNzY11GUIIIYQ4BXv27KF///6xLuOs6FMBLTExEYj+gN1ud4yrEUIIIcSJaGlpITc3t/M83hf0qYB2sK3pdrsloAkhhBC9TF+antQ3GrlCCCGEEL2IBDQhhBBCiB5GApoQQgghRA8jAU0IIYQQoofpMQHtwQcfRNO0Lrdhw4Z13h8IBLjjjjtITU0lISGBK664gtra2hhWLIQQQghxZvSYgAYwcuRI9u/f33lbsWJF53133303Cxcu5M0332Tp0qVUV1dz+eWXx7BaIYQQQogzo0cts2G1WsnKyjrq416vl2effZZXX32VefPmAfD8888zfPhw1qxZw5QpU455vGAwSDAY7Px3S0vLmSlcCCGEEKIb9agRtNLSUvr168fAgQO59tprqaqqAmDdunWEw2Hmz5/f+dhhw4aRl5fH6tWrj3u8hx56CI/H03mTXQSEEEII0Rv0mIA2efJkXnjhBf7973/z+OOPs3v3bmbOnElrays1NTXY7XaSkpK6fE5mZiY1NTXHPeb999+P1+vtvO3Zs+cMfxVCCCGEEKevx7Q4L7roos73i4qKmDx5Mvn5+fzpT3/C5XKd0jEdDgcOh6O7ShRCCCGEOCt6zAjakZKSkigsLKSsrIysrCxCoRDNzc1dHlNbW3vMOWtCCCGEEL1Zjw1obW1tlJeXk52dzYQJE7DZbCxevLjz/uLiYqqqqpg6dWoMqxRCCCGE6H49psV53333cckll5Cfn091dTUPPPAAFouFq6++Go/Hwy233MI999xDSkoKbrebO++8k6lTpx73Ck4hhBDHFzIi2C095hQghDhCj/nt3Lt3L1dffTUNDQ2kp6czY8YM1qxZQ3p6OgC//e1v0XWdK664gmAwyIUXXshjjz0W46qFEKJ3CURC/GrrQv5euZZ7R1/ClwdOi3VJQohj0JRSKtZFnC0tLS14PB68Xi9utzvW5QghxFlV1lLD/R+/yu62OgASbU4WLvg+CTZnjCsT4pP1xfN3j52DJoQQonsopfjz7jXcsPRRdrfVkeZIJCcuhdZwgDd2rYp1eUKIY5CAJoQQ57DWsJ/vffwKP9v8V4JmhGkZQ3lt7l3cPvwCAF4tX0F7OPgpRxFCnG0S0IQQ4hy1pbGKaz54mPf3b8WqWfj2yM/xuyk3kOxIYEFOEfkJ6XjDPt7cffwdWYQQsSEBTQghzjGmMnmhdAm3rniC/f5mcuJSeHbm17lu8Ex0Lfqyb9F0bimM7m38UvkyfBEZRROiJ5GAJoQQ55CGQCt3rn6eR7f/G0OZLMgp4pU532Jk8tF7EV+QU0RufCrekI8/714Tg2qFEMcjAU0IIc4Ra+pKuWbJw3x4oBSHxcb/jL2Cn064+rhXaVp1y6FRtLJlBCKhs1muEOITSEATQoheLmIaPLr939y5+jkagm0MSszkpVnf5LL8SWia9omf+5n+Y8mJS6Ep1M6fKz48SxULIT6NBDQhhOjFqn2N3LbiSV4oXYJCcUXBZF6c/U0GujNP6POtuoWbCucC8FLZUgJG+EyWK4Q4QRLQhBCil1pcvYVrPniELU1VJFid/GziNdw/5gs4LbaTOs7FuePJdiXREGzjrxUfnaFqhRAnQwKaEEL0MgEjzEOb3uZ7H79CWyTAqORcXpnzLebnFJ3S8Q4fRXuxbClBGUUTIuYkoAkhRC+yu7WOG5f9gb90zBe7YfBsnpnxdXLiU07ruJfkTSDT5eFAoIW/Va7tjlKFEKdBApoQQvQCSin+Vvkx1y/9PWUtNaQ4Enh06s3cOfIirLrltI9v063cNKRjFK10CSEjctrHFEKcOgloQgjRw7WFA/zPutf5341/IWCEOS99MK/OuYspGYXd+jyX5k0kw+mmNuDl71UyiiZELElAE0KIHmx7016uW/p73t23CYum883hn+HRqTeT5kzs9ueyW6zcMGQOAC+ULiFsyiiaELEiAU0IIXogU5m8XLacm5c/zt72BrJdSTw942vcWDinc7umM+Gy/EmkORKp8TfzTtX6M/Y8QohPJgFNCCF6mKZgG3d/+CK/2/YPIspgbvZIXpnzLYpS8s/4czssNm4YMhuA50s/IGIaZ/w5hRBHk4AmhBA9yNr6cq5Z8ggra4ux61a+X3QZv5h0HW573Fmr4Qv555HqSKDa18Q/9sgomhCxIAFNCCF6gIhp8OTO97h95TMcCLRQkJDOi7Pu4MoBUz51u6bu5rTauX7wLACeK5FRNCFiQQKaEELEWI2/mdtXPc3TxYtRKC7Nm8hLs+9kiCc7ZjVdUTCFZHs8+3yN/HvvxpjVIURfJQFNCCFiaOn+7Vz7wSNsaKgg3urg/yZcxQ/HXYnLao9pXS6rnetkFE2ImJGAJoQQMRAyIvxqy9+596M/4g37GO7J4eXZd/KZ/mNjXVqnLw6YgsceR1V7Pe/t2xzrcoToUySgCSHEWVbZdoCblj/G67tWAXDtoBk8N+t2chPSYlxZV3FWB9cNmgnAsyXvYygzxhUJ0XdIQBNCiLPoH3vWc92S31PsrcZjj+N3k2/k7lEXY9OtsS7tmL44YCpum4uKtgMs2rcl1uUI0WdIQBNCiLPAFwnywPo/8cD6P+E3QkxIG8hrc+5iRtawWJf2iRJsTq4ZNAOAZ0sWY8oomhBnhQQ0IYQ4w4q91Vy35Pf8Y896dDS+PmwBj027lQyXJ9alnZCrBk4nwepkV2sd71dvjXU5QvQJEtCEEOIMUUrxxq5V3LjsD1S115Pp9PDE9Nu4dej5WM7gdk3dLcHm5OpB0wF4puR9GUUT4izoPa8QQgjRi3hDPu776CV+ueXvhE2DWVnDeWXutxifNjDWpZ2SqwdOJ97qoKylhqX7t8e6HCHOeRLQhBCim21sqOCaJQ+ztGY7Nt3CfaMu4dfnfYUke3ysSztlbnscVw2MjqI9XbIYpVSMKxLi3CYBTQghuomhTJ4pXsxXVzxJrd9LXnwaz8/8BlcNmn7Wt2s6E64eNJ04i50S736W1eyIdTlCnNMkoAkhRDc44G/hjlXP8MTO9zBRXNR/HC/NvpNhSTmxLq3bJNnj+fLAaQA8UyyjaEKcSRLQhBDiNK2sLebqJQ+ztn4XLoudB8d9kf+d8GXibY5Yl9btrh00E5fFzg7vPlbWFse6HCHOWRLQhBDiFIXNCL/b+g/uWvM8zaF2Ct3ZvDT7Ti7OmxDr0s6YJEc8XxwwFSC6ubuMoglxRkhAE0KIU7C3vYFblj/By+XLAfjygGk8P+sbFCSmx7iyM++6wTNxWGxsa97D6rqSWJcjxDlJApoQQpyk/+zbxLVLHmF7817cNhe/Ou96vlN0KQ6LLdalnRUpjgSuLJgMyCiaEGeKBDQhhDhBgUiI/9v4F/5r7Wu0R4KMTSng1Tl3MSd7ZKxLO+uuHzwbh25lS1MVHx0oi3U5QpxzJKAJIcQJKGup4SvLHuWvlR+joXFL4TyemH4bWXFJsS4tJtKciVwuo2hCnDES0IQQ4hMopfhLxYfcsPRRdrXWkepI5LFpt3D78Auw6pZYlxdTXxk8G7tuZWNjBevqd8W6HCHOKRLQhBDiOFrDfr6/9lUe2vQ2QTPCtIyhvDb3LialD451aT1CusvNZfmTAHiqeFGMqxHi3CIBTQghjmFLYxXXfPAwi6u3YNF0vj3ys/xuyg2kOBJiXVqPcsOQOdh0C+sbdssomhDdSAKaEEIcxlQmL5Yu5dYVT7Df30xOXArPzryd6wbPQtfkJfNImS4Pn8+LjqI9W/x+jKsR4twhrzZCCNGhIdDKt1Y/z++3/wtDmSzIKeKVOd9iVHJurEvr0W4cMgerZuGj+jI2NlTEuhwhzgkS0IQQAviwrpRrljzMmgOlOCw2/mfsFfx0wtUk2JyxLq3Hy4pL4pKO3ROeKV4c42qEODdIQBNC9GkR0+AP2//NN1c/R0OwjUGJmbw065tclj8JTdNiXV6vcVPhHCyazpoDpWxprIp1OUL0ehLQhBB91n5fE19d8STPly5Bobi8YDIvzv4mA92ZsS6t1+kXl8LncscD0XXRhBCnRwKaEKJPWly9hWuWPMzmpioSrE5+NvEa/mvMF3D2ke2azoSbC+di0XRW1RWzrWlPrMsRoleTgCaE6FMCRpifbfor3/v4FVrDAUYl5/LKnG8xP6co1qX1ev3jU7mo/1hA5qIJcbokoAkh+ozdrXXctOwP/LliDQA3DJ7NMzO+Tk58SowrO3fcXDgPHY3ltTvZ2bwv1uUI0WtJQBNCnPOUUvy9ci3XL/09pS01pDgSeHTqzdw58qI+v11Td8tLSONCGUUT4rRJQBNCnNPawgF+sP4NfrzxzwSMMOelD+bVOXcxJaMw1qWds24pnIuGxpKa7ZR4q2NdjhC9kgQ0IcQ5a3vTXq5b+nv+vXcjFk3nm8M/w6NTbybNmRjr0s5pBYkZLOiY0/eM7C4gxCmRgCaEOOcopXilfDk3L3+cve0NZLmSeGrG17ixcI5s13SW3FI4Dw2N9/dvpaylJtblCNHryCuVEOKc0hxs5+4PX+S3W/9BRBnMzR7Jq3O+xZiU/FiX1qcMcmdyfr9RgOzRKcSpkIAmhDhnrK0v5+olD7Oidid23cr3iy7jF5Ouw22Pi3VpfdKtQ88HYFH1Fna11Ma4GiF6FwloQoheL2IaPLnzPW5f+QwHAi0UJKTz4qw7uHLAFNmuKYYGu7OYmz0SheLZEhlFE+JkSEATQvRqtX4v31j1DE8XL0ahuDRvIi/NvpMhnuxYlyY4NIr2n32bqWiti3E1QvQeEtCEEL3WsprtXPPBw6xv2E281cH/TbiKH467EpfVHuvSRIehnn7MzhqBQvFcyQexLkeIXkMCmhCi1wkZEX69ZSH3fPhHvGEfwz05vDz7Tj7TsUCq6FluHToPgH/v3UhVW32MqxGid+ixAe1nP/sZmqbx7W9/u/NjgUCAO+64g9TUVBISErjiiiuorZWJp0L0JVVt9dy0/DFe27USgGsGzeC5WbeTm5AW48rE8QxP6s/MzGGYKJ6XUTQhTkiPDGgff/wxTz75JEVFXTcvvvvuu1m4cCFvvvkmS5cupbq6mssvvzxGVQohzrZ/7tnAdUseodhbjccex+8m38g9oy7GpltjXZr4FLd0zEX7594N7G1viHE1QvR8PS6gtbW1ce211/L000+TnJzc+XGv18uzzz7Lb37zG+bNm8eECRN4/vnnWbVqFWvWrIlhxUKIM80XCfLg+j/xw/Vv4DNCjE8dwGtz7mJG1rBYlyZO0KjkXKZlFGIoU0bRhDgBPS6g3XHHHXzuc59j/vz5XT6+bt06wuFwl48PGzaMvLw8Vq9efcxjBYNBWlpautyEEL1Lsbea65b8nnf2rEdH42vD5vP49NvIcHliXZo4SQev6Hxnz3qqfY0xrkaInq1HBbTXX3+d9evX89BDDx11X01NDXa7naSkpC4fz8zMpKbm2NuIPPTQQ3g8ns5bbm7umShbCHEGKKV4Y9cqblr2GFXt9WQ43Twx/TZuGzofi2zX1CsVpeQzOX1IxyjakliXI0SP1mNe5fbs2cNdd93FK6+8gtPp7JZj3n///Xi93s7bnj17uuW4Qogzyxvy8Z2PXuKXW/5OyIwwM2s4r869i/FpA2NdmjhNt3WMoi2sWkeNrzm2xQjRg/WYgLZu3Trq6uoYP348VqsVq9XK0qVLeeSRR7BarWRmZhIKhWhubu7yebW1tWRlZR3zmA6HA7fb3eUmhOjZNjZUcM2Sh1lSsx2bbuG+UZfwm/O+QpI9PtaliW4wNrWASWmDiCiDF0uXxLocIXqsHhPQzj//fLZs2cLGjRs7bxMnTuTaa6/tfN9ms7F48eLOzykuLqaqqoqpU6fGsHIhRHcwlMmzxe/ztZVPUev3khufyvMzv8FVg6bLdk3nmINz0f5a9TG1fm+MqxGiZ+ox16YnJiYyatSoLh+Lj48nNTW18+O33HIL99xzDykpKbjdbu68806mTp3KlClTYlGyEKKb1Ada+MG6N/i4vhyAi/qP4/tFlxFvc8S4MnEmTEgbyPjUAaxv2M0fS5fynaJLY12SED1OjxlBOxG//e1vufjii7niiiuYNWsWWVlZvPXWW7EuSwhxGlbWFnP1Bw/zcX05TouNB8d9kf+d8GUJZ+e4g3PR3q78iAN+ucJeiCNpSikV6yLOlpaWFjweD16vV+ajCRFjYTPCYzv+w0tlywAodGfz04nXUJCYHuPKxNmglOLWFU+wqbGSqwdO597Rl8S6JNGD9cXzd68aQRNCnBv2tjdwy/InOsPZlwZM5flZ35Bw1odomsZtQ6PrWr5V8SH1gdYYVyREzyIBTQhxVv1n3yauXfII25v34ra5+NV51/Pdos/jsNhiXZo4yyanD2Z0ch5BM8LLHWFdCBElAU0IcVYEIiF+svEt/mvta7RHgoxJyefVOXcxJ3tkrEsTMRIdRYvORftzxRoag20xrkiInkMCmhDijCtrqeEryx7l7cqP0NC4pXAeT07/KllxSbEuTcTY1IxCRiT1J2CEeblseazLEaLHkIAmhDhjlFK8VfEhNyx9lF2tdaQ6Enls2i3cPvwCrLol1uWJHuDwUbQ3d6+mOdge44qE6BkkoAkhzojWsJ/7177KTze9TdCMMC2jkNfm3sWk9MGxLk30MDMyhzHMk4PfCPFK+YpYlyNEjyABTQjR7bY2VnHtkkdYVL0Fi6Zz18jP8rspN5LiSIh1aaIH0jSNW4fOA+BPu1fhDfliXJEQsScBTQjRbUxl8mLpUm5Z8QTVviZy4lJ4dubtXD94FromLzfi+GZnjaDQnU17JMhrMoomhAQ0IUT3aAi0cteaF/j99n9hKJMF/Yp4Zc63GJWcG+vSRC8QHUWLzkV7bddKWsP+GFckRGxJQBNCnLYP60q5ZskjrK4rwWGx8T9jL+enE68mweaMdWmiF5mTPYJBiZkdo2grY12OEDElAU0IccoipsEftr/LN1c/R0OwlYGJmfxx1je5LP88NE2LdXmil9E1vfOKztd2raAtHIhxRULEjgQ0IcQp2e9r4qsrn+L50g9QKC4vmMwfZ93BIHdmrEsTvdi8fqMYmJhBazjA67tkFE30XRLQhBAn7f3qrVyz5GE2N1YSb3Xws4nX8F9jvoDTao91aaKX0zWdmwujV3S+Wr6C9nAwxhUJERsS0IQQJyxohPn5pr/y3Y9fpjUcYFRyLq/OuYv5OUWxLk2cQxbkFJGfkE5L2M+bu1fHuhwhYkICmhDihFS01nHjsj/wZsUaAG4YPJtnZnydnPiUGFcmzjUWTeeWjlG0l8qX4YvIKJroeySgCSE+kVKKv1eu5bqlv6e0pYZkezy/n3ozd468SLZrEmfMBTlF5Man4g35+PPuNbEuR4izTgKaEOK42sNBfrD+DX688c8EjDDnpQ3mtbl3MTWjMNaliXOcVbccGkUrW4Y/EopxRUKcXRLQhBDHtKN5L9ctfYR/792IRdO5Y/iFPDrtZtKc7liXJvqIz/QfS05cCk2hdv5S8WGsyxHirJKAJoToQinFq+UruGnZ4+xpbyDLlcRTM77GTYVzZbsmcVZZdQs3F84F4KWypQSMcIwrEuLskVdbIUSn5mA793z4Ir/Z+g4RZTA3eySvzvkWY1LyY12a6KM+lzuebFcSDcE23pZRNNGHSEATQgCwrn4XVy95mOW1O7HrVr5fdBm/mHQdbntcrEsTfZhVt3BTxyjai6VLCcoomugjJKAJ0ccZyuTJne9x+8qnORBooSAhnRdn3cGVA6bIdk2iR7gkbwKZLg/1wVb+Vrk21uUIcVZIQBOiD6v1e7l95dM8XbwYE8UleRN4afadDPFkx7o0ITrZdCs3DTk4iraEkBGJcUVCnHkS0IToo5bVbOeaDx5mfcNu4ix2/nf8l3lg3BdxyXZNoge6NG8iGU43tQEvf6+SUTRx7pOAJkQfEzIi/HrLQu758I94wz6GeXJ4Zc63uCh3XKxLE+K47BYrNwyZA8ALpUsImzKKJs5tEtCE6EOq2uq5efnjvLZrJQDXDJrBczNvJzchLcaVCfHpLsufRJojkRp/M+9UrY91OUKcURLQhOgj/rVnA9cteYSd3n147HH8dvIN3DPqYuwWa6xLE+KEOCw2bhgyG4DnSz8gYhoxrkiIM0cCmhDnOF8kyI/Wv8kP1r+BzwgxPnUAr825i5lZw2NdmhAn7Qv555HqSKDa18Q/9sgomjh3SUAT4hxW4q3m+qWPsnDPOnQ0vjZsPo9Pv40MlyfWpQlxSpxWO9cPngXAcyUyiibOXRLQhDgHKaX4067V3LjsMSrbDpDhdPP49Nu4beh8LLJdk+jlriiYQrI9nn2+Rv69d2OsyxHijJBXaiHOMd6Qj+989BK/2PI3QmaEmZnDeHXOXUxIGxjr0oToFi6rnetkFE2c4ySgCXEO2dhQwTVLHmZJzXasmoV7R13MbybfQJIjPtalCdGtvjhgCh57HFXt9by3b3OsyxGi20lAE+IcYCiTZ4vf52srn6LW7yU3PpXnZ93O1YNmyHZN4pwUZ3Vw3aCZADxT8j6GMmNckRDdSwKaEL1cfaCFO1c9x+M7/4OhTC7qP5aXZ3+L4Un9Y12aEGfUFwdMxW1zUdl2gEX7tsS6HCG6lQQ0IXqxVbXFXP3Bw3xUX4bTYuPBcV/kx+O/TLzNEevShDjjEmxOrhk0A4BnSxZjyiiaOIdIQBOiFwqbER7e9k++teZ5mkLtFLqzeXn2t7g4b4K0NEWfctXA6SRYnexqreP96q2xLkeIbiMBTYheZm97A7cuf5KXypYB0TbP87O+QUFieowrE+LsS7A5uXrQdCA6F01G0cS5QgKaEL3Ie/s2c+2SR9jWvAe3zcUvJ13H94o+j8Nii3VpQsTM1QOnE291UNZSw5L922NdjhDdQgKaEL1AIBLiJxvf4v61r9IeCTImJZ9X59zF3H6jYl2aEDHntsdx1cCOUbTixSilYlyREKdPApoQPVx5Sy1fWfYH3q78CA2Nmwvn8uT0r5IVlxTr0oToMa4ZNIM4i52Slv0sq9kR63KEOG0S0ITowf6zbxNfWfp7drXWkupI5A/TbuEbwy/EqltiXZoQPYrHHseXB04D4GkZRRPnAAloQvRQlW0H+NH6NwmaEaZlFPLa3Ls4L31wrMsSose6dtBMXBY7O737WFlbHOtyhDgtEtCE6IEMZfKjDX8maEaYnD6E3025kRRHQqzLEqJHS3LE88UBUwEZRRO9nwQ0IXqg18pXsrmxknirgx+MvQJdk19VIU7EdYNn4rTY2Na8h9V1JbEuR4hTJq/6QvQwFa0HeHzHuwB8e+Tn5GIAIU5CiiOBKwumADKKJno3CWhC9CCGMvnxhui8synpQ7gsf1KsSxKi17lu8CwcupUtTVV8eKAs1uUIcUokoAnRg7xWvpLNTVXEWx38z9grZNsmIU5BmjORywsmA/B08SIZRRO9kgQ0IXqIw1ubd4+S1qYQp+Mrg2dj161saqxkXf2uWJcjxEmTgCZED3Bka/PzedLaFOJ0pLvcnVMEnipeFONqhDh5EtCE6AFeK18hrU0hutkNQ+Zg0y2sb9gto2ii15GAJkSMRVub/wGktSlEd8p0eTpHo58pXhzjaoQ4ORLQhIihw1ubUzMKpbUpRDe7ccgcrJqFj+vL2dhQEetyhDhhEtCEiKHDW5v/PfZyaW0K0c2y4pK4JG8CIKNooneRgCZEjHRtbV5MlisptgUJcY66qXAOFk1nzYFStjRWxbocIU6IBDQhYuDo1ubEWJckxDmrX1wKn8sdD0R3FxCiN5CAJkQMSGtTiLPr5sK5WDSdVXXFbGvaE+tyhPhUEtCEOMuktSnE2dc/PpWL+o8FZC6a6B0koAlxFklrU4jYublwHjoay2t3srN5X6zLEeIT9ZiA9vjjj1NUVITb7cbtdjN16lT+9a9/dd4fCAS44447SE1NJSEhgSuuuILa2toYVizEyXtVWptCxExeQhoXdoyiyVw00dP1mIDWv39/fvazn7Fu3TrWrl3LvHnz+PznP8+2bdsAuPvuu1m4cCFvvvkmS5cupbq6mssvvzzGVQtx4ipa66S1KUSM3VI4Fw2NpTXbKfZWx7ocIY5LU0qpWBdxPCkpKfzyl7/kyiuvJD09nVdffZUrr7wSgJ07dzJ8+HBWr17NlClTjvn5wWCQYDDY+e+WlhZyc3Pxer243e6z8jUIAdHW5q3Ln2BLUxXTMgp5eMpNMnomRIz899rXeHffJuZlj+IX510X63LECWhpacHj8fSp83ePGUE7nGEYvP7667S3tzN16lTWrVtHOBxm/vz5nY8ZNmwYeXl5rF69+rjHeeihh/B4PJ233Nzcs1G+EEd5tXwFWzpbm7LXphCxdHPhPDQ03t+/lbKWmliXI8Qx9aiAtmXLFhISEnA4HHz961/n7bffZsSIEdTU1GC320lKSury+MzMTGpqjv/Ldf/99+P1ejtve/bIpdXi7Du8tXnPqIvJdHliXJEQfdsgdybn9xsFwLPF78e4GiGOrUcFtKFDh7Jx40Y+/PBDbr/9dm644Qa2b99+ysdzOBydFx0cvAlxNhnK5Ecb/kzIjDAto5BL5apNIXqEW4eeD8Ci6i3sapELzkTP06MCmt1uZ/DgwUyYMIGHHnqIMWPG8PDDD5OVlUUoFKK5ubnL42tra8nKyopNsUKcgFfKlktrU4geaLA7i7nZI1Eoni2RUTTR8/SogHYk0zQJBoNMmDABm83G4sWHLosuLi6mqqqKqVOnxrBCIY6vorWOJ3a+B0hrU4ie6OAo2n/2baaitS7G1QjRlTXWBRx0//33c9FFF5GXl0drayuvvvoqS5Ys4d1338Xj8XDLLbdwzz33kJKSgtvt5s4772Tq1KnHvYJTiFjq2tocKq1NIXqgoZ5+zM4awdKa7Txb8gH/O+HLsS5JiE49JqDV1dXxla98hf379+PxeCgqKuLdd99lwYIFAPz2t79F13WuuOIKgsEgF154IY899liMqxbi2Lq2NmVBWiF6qluHzmNpzXbe3buR24aeT15CWqxLEgLo4eugdbe+uI6KOPt2t9Zx7ZJHCJkRfjD2Cj6fPynWJQkhPsHda15gee1OLsmdwAPjvxjrcsQx9MXzd4+egyZEbxNtbb4prU0hepFbOuai/XPvBva2N8S4GiGiJKAJ0Y1eKVvO1qY9JFid0toUopcYlZzLtIxCDGXyfMkHsS5HCEACmhDdZrdctSlEr3Xwis539qyn2tcY42qEkIAmRLc4srV5Sd6EWJckhDgJRSn5TE4f0jGKtiTW5QghAU2I7vCytDaF6PVu6xhFW1i1jhpfc2yLEX2eBDQhTtPu1jqelNamEL3e2NQCJqUNIqIMXihdEutyRB8nAU2I0xAxDR5cH21tTs+U1qYQvd3BuWh/q/qYWr83xtWIvkwCmhCn4ZXyFWxr7mhtjpHWphC93YS0gYxPHUDYNPhj6dJYlyP6MAloQpyiw1ub946+mAxpbQpxTjg4F+3tyo844G+JcTWir5KAJsQpOLK1eXGutDaFOFdMTBvEmJR8QmaEP5bJKJqIDQloQpyCl8uXS2tTiHOUpmncNnQ+AG9VfEh9oDXGFYm+SAKaECdpV0uttDaFOMdNTh/M6OQ8gmaEl8uWxboc0QdJQBPiJERMgx9t+DNh02BG5jBpbQpxjoqOokXnov25Yg2NwbYYVyT6Gmt3Hcg0TcrKyqirq8M0zS73zZo1q7ueRoiYOry1+V9jviCtTSHOYVMzChmR1J/tzXt5uWw53xp5UaxLEn1ItwS0NWvWcM0111BZWYlSqst9mqZhGEZ3PI0QMSWtTSH6loOjaHd/+CJv7l7NVwbPIskRH+uyRB/RLS3Or3/960ycOJGtW7fS2NhIU1NT562xUTadFb1fxDR4cMOb0toUoo+ZkTmMYZ4c/EaIV8qXx7oc0Yd0S0ArLS3lpz/9KcOHDycpKQmPx9PlJkRv93L5crY375XWphB9jKZp3Dp0HgBv7FqFN+SLcUWir+iWgDZ58mTKysq641BC9DiHtzbvG32JtDaF6GNmZ42g0J2NzwjxWvmKWJcj+ohTnoO2efPmzvfvvPNO7r33Xmpqahg9ejQ2m63LY4uKik69QiFi6MjW5udyx8e6JCHEWRYdRTuf7378Mq/tWsk1g2bgtsfFuixxjjvlgDZ27Fg0TetyUcDNN9/c+f7B++QiAdGbvVwmrU0hBMzJHsGgxEzKW2t5fdcqvjpsfqxLEue4Uw5ou3fv7s46hOhxyltqebJYWptCCNA1nduGns/3177Ka7tWcM2gGSTYnLEuS5zDTjmg5efnd76/bNkypk2bhtXa9XCRSIRVq1Z1eawQvUF0QVppbQohDpnXbxQDEzPY1VrH67tWcmvHQrZCnAndcpHA3Llzj7mchtfrZe7cud3xFEKcVQdbm4k22WtTCBGlazo3F0av6Hy1fAXt4WCMKxLnsm4JaAfnmh2poaGB+HhZ1E/0Loe3Nu8ddQnpLneMKxJC9BQLcorIT0inJeznT7tXxboccQ47rZ0ELr/8ciB6QcCNN96Iw+HovM8wDDZv3sy0adNOr0IhziJpbQohPolF07mlcB4/XP8GL5cv58sDpxFndXz6Jwpxkk5rBO3gQrRKKRITE7ssTpuVlcVXv/pVXn755e6qVYgz7qWyZdLaFEJ8ogtyisiLT8Mb8vHn3WtiXY44R53WCNrzzz8PQEFBAffdd5+0M0WvVt5Sy1PFiwBpbQohjs+qW7i5cC4PbniTl8qW8cUBU3FZ7bEuS5xjumUO2gMPPEB8fDx1dXUsX76c5cuXU1dX1x2HFuKsOLy1OVNam0KIT/GZ/mPJiUuhKdTOXyo+jHU54hzULQGttbWV66+/npycHGbPns3s2bPJycnhuuuuw+v1dsdTCHFGHd7a/C9pbQohPsXBUTSAl8qWEjDCMa5InGu6JaDdeuutfPjhh7zzzjs0NzfT3NzMO++8w9q1a/na177WHU8hxBlT1lIjrU0hxEn7XO54sl1JNATbeFtG0UQ365aA9s477/Dcc89x4YUX4na7cbvdXHjhhTz99NMsXLiwO55CiDMiYhr8eMOfpbUphDhpVt3CTR2jaC+WLiUoo2iiG3VLQEtNTcXjOXobHI/HQ3Jycnc8hRBnhLQ2hRCn45K8CWS6PNQHW/lr5cexLkecQ7oloP3P//wP99xzDzU1NZ0fq6mp4Tvf+Q4/+MEPuuMphOh2h7c27xt9qbQ2hRAnzaZbuWnIwVG0JYSMSIwrEueK01pm46DHH3+csrIy8vLyyMvLA6CqqgqHw8GBAwd48sknOx+7fv367nhKIU7Lka3Nz/YfF+uShBC91KV5E3mu5H3qAi38vWotVw6YEuuSxDmgWwLaZZdd1h2HEeKs+aO0NoUQ3cRusXLDkDn8csvfeaF0CZ/Pn4hN75bTq+jDuuV/0AMPPNAdhxHirChrqeGpndLaFEJ0n8vyJ/F8yQfU+Jt5p2o9Xyg4L9YliV6uW+agATQ3N/PMM89w//3309jYCETbmfv27euupxDitB1sbUaUwcys4dLaFEJ0C4fFxg1DZgPwfOkHREwjxhWJ3q5bAtrmzZspLCzk5z//Ob/61a9obm4G4K233uL+++/vjqcQolv8sctem1+Q1qYQott8oWAyqY4Eqn1N/GOPzLcWp6dbAto999zDjTfeSGlpKU6ns/Pjn/3sZ1m2bFl3PIUQp+3I1maaU1qbQoju47TYuH5wdBTtuRIZRROnp1sC2scff3zMHQNycnK6LL0hRKxETIMfrX9TWptCiDPqioLJJNvj2edr5N97N8a6HNGLdUtAczgctLS0HPXxkpIS0tPTu+MphDgtfyxbxg7vPtw2l7Q2hRBnjMtq57rBswAZRROnp1sC2qWXXsqPf/xjwuHoNheaplFVVcX3vvc9rrjiiu54CiFOmbQ2hRBn0xcHTMFjj6OqvZ739m2OdTmil+qWgPbrX/+atrY20tPT8fv9zJ49m8GDB5OYmMhPfvKT7ngKIU7Jka3Ni/qPjXVJQohzXJzVwXWDZgLwTMn7GMqMcUWiN+qWddA8Hg/vvfceK1euZNOmTbS1tTF+/Hjmz5/fHYcX4pS9WLpUWptCiLPuiwOm8lLZMirbDrBo3xYu7D8m1iWJXua0A5ppmrzwwgu89dZbVFRUoGkaAwYMICsrC6WUnBBFzJS11PB08WJAWptCiLMrwebkmkEzeGLnezxbspgFOaPRtW5belT0Aaf1v0UpxaWXXsqtt97Kvn37GD16NCNHjqSyspIbb7yRL3zhC91VpxAnJWIaPNjR2pwlrU0hRAxcNXA6iTYnu1rreL96a6zLEb3MaQW0F154gWXLlrF48WI2bNjAa6+9xuuvv86mTZtYtGgR77//Pn/84x+7q1YhTtiLpUvZ2dHa/C9pbQohYiDB5uTqgTOA6Fw0U+aiiZNwWgHttdde47/+67+YO3fuUffNmzeP73//+7zyyiun8xRCnDRpbQoheoqrBk4j3uqgrKWGJfu3x7oc0YucVkDbvHkzn/nMZ457/0UXXcSmTZtO5ymEOCnS2hRC9CRuexxXDZwOwDPFi1FKxbgi0VucVkBrbGwkMzPzuPdnZmbS1NR0Ok8hxEl5oXSJtDaFED3KNYNmEGexU9Kyn6U1MoomTsxpBTTDMLBaj38hqMViIRKJnM5TCHHCylpqeKb4fQC+I61NIUQP4bHH8eWB0wB4pvh9GUUTJ+S0ltlQSnHjjTficDiOeX8wGDydwwtxwg5vbc7OGsFnpLUphOhBrh00k9d3rWKndx8ra4uZkTUs1iWJHu60AtoNN9zwqY/5yle+cjpPIcQJOby1ef+Yy6S1KYToUZIc8XxxwFT+WLaUp4oXMT1zqLxOiU90WgHt+eef7646hDhlpd790toUQvR41w2eyZ92r2J7815W15UwLXNorEsSPZgsayx6tYhp8OAGaW0KIXq+FEcCVxZMAeBpuaJTfAoJaKJXe6F0CcXeajy2OO6XqzaFED3cdYNn4dCtbGmq4sMDZbEuR/RgEtBEr9WltVl0KWnOxBhXJIQQnyzNmcjlBZMBeLp4kYyiiePqMQHtoYceYtKkSSQmJpKRkcFll11GcXFxl8cEAgHuuOMOUlNTSUhI4IorrqC2tjZGFYtYOrK1eWHOmFiXJIQQJ+Qrg2dj161saqxkbX15rMsRPVSPCWhLly7ljjvuYM2aNbz33nuEw2EuuOAC2tvbOx9z9913s3DhQt58802WLl1KdXU1l19+eQyrFrEirU0hRG+V7nJzWf4kgM5t6YQ4kqZ66PjqgQMHyMjIYOnSpcyaNQuv10t6ejqvvvoqV155JQA7d+5k+PDhrF69milTpnzqMVtaWvB4PHi9XtxuudKvtyr17uf6pY8SUQb/N+EquTBACNHr1Pq9XLboF4RNgyenf5UJaQNjXVKP1hfP3z1mBO1IXq8XgJSUFADWrVtHOBxm/vz5nY8ZNmwYeXl5rF69+pjHCAaDtLS0dLmJ3u3w1uYcaW0KIXqpTJeHz+dFR9GekVE0cQw9MqCZpsm3v/1tpk+fzqhRowCoqanBbreTlJTU5bGZmZnU1NQc8zgPPfQQHo+n85abm3umSxdn2OGtze9La1MI0YvdOGQOVs3Cx/XlbGyoiHU5oofpkQHtjjvuYOvWrbz++uundZz7778fr9fbeduzZ083VShiQa7aFEKcS7LikrgkbwIgo2jiaD0uoH3zm9/knXfe4YMPPqB///6dH8/KyiIUCtHc3Nzl8bW1tWRlZR3zWA6HA7fb3eUmeidpbQohzkU3Fc7BoumsOVDKlsaqWJcjepAeE9CUUnzzm9/k7bff5v3332fAgAFd7p8wYQI2m43Fiw/9lVFcXExVVRVTp0492+WKs+z50g+ktSmEOOf0i0vhc7njAbmiU3R1Wntxdqc77riDV199lb/97W8kJiZ2zivzeDy4XC48Hg+33HIL99xzDykpKbjdbu68806mTp16Qldwit6rxFstrU0hxDnr5sK5/GPPelbVFbO1aQ+jkmW+tOhBI2iPP/44Xq+XOXPmkJ2d3Xl74403Oh/z29/+losvvpgrrriCWbNmkZWVxVtvvRXDqsWZFjENfrThzxjKlNamEOKc1D8+lYs6lgt6VkbRRIceuw7amdAX11Hp7Z4uXsSTOxfhscXxxry7ZfRMCHFOqmqr58rFv8ZE8fLsOxmWlBPrknqUvnj+7jEjaEIcSVqbQoi+Ii8hjQs7RtFkLpoACWiihzp41aahTOZmj5TWphDinHdL4Vw0NJbWbKfYWx3rckSMSUATPdLzpR9Q4t0fvWqz6DK5alMIcc4rSMzggpwiQNZFExLQRA90ZGszVVqbQog+4pbCeWhofLB/G2Utx94lR/QNEtBEjyKtTSFEXzbQncn8fqMBeLbjD1XRN0lAEz3KcyUdrU27tDaFEH3TLUPnAbCoegu7WmpjXI2IFQloosco9lbzbEn0L8bvjv68tDaFEH3SYHcWc7NHolCdr4mi75GAJnqEiGnwo/WHWpsHJ8oKIURfdOvQ8wH4z77NVLTWxbgaEQsS0ESP8FzJB5S0SGtTCCEAhnr6MTtrRMco2gexLkfEgAQ0EXPS2hRCiKPd2jEX7d29G6lqq49xNeJsk4AmYipsRqS1KcRZtry6mrtWrODvu3dj9p3d/nqd4Un9mZk5DBPFczIXrc+RgCZiSlqbQpw9beEwP167lvtWr2ZNbS0/Wb+ery5ZQklzc6xLE8dxcC7av/ZuZG97Q4yrEWeTBDQRM8Xeap7rmFvxvSJpbQpxJq2tq+PaRYv4R2UlGjC/f3/irFa2NDZyw+LF/HrjRtrC4ViXKY4wMjmXaRlDMZTJ8zIXrU+RgCZi4sjW5oJ+0toU4kwIRCL8euNG7li+nBqfj5z4eB6fPZufTJ7MGxdcwPz+/TGBP5WX88V33+VfVVUoaXv2KAfnor2zZz3VvsYYVyPOFgloIiaktSnEmbeloYHrFi/mT+XlAFw+YAAvz5/PuLQ0ADJcLn4yeTK/nzGD/IQEGoNBHvz4Y76xbBm7WlpiWbo4TFFKPpPTh3SMoi2JdTniLJGAJs46aW0KcWaFDIPHtm7lq0uWsKetjXSnk4enT+d748cTZ7Ue9fjzMjN5ZcECvjFqFE6LhfX19Vy3aBEPb95Mu7Q9e4TbOuaiLaxaR42vObbFiLNCApo4q8JmhAfX/wlDmczLHiWtTSG6WUlzMzd98AEvFhdjAp/JzeXVBQuYkpUFgDdo8rdSH/+7spkNtaHOz7PpOjcMHcobF1zAnH79MJTi1dJSvvzeeyzau1fanjE2NrWASWmDiCiDF0qXxLoccRZoqg/91rW0tODxePB6vbjd7liX0yc9ufM9ni5ejMcex5vz7iHFkRDrkoQ4J0RMk5dLSnh6+3YiSpFkt/O98eOZl5NDe9hk+Z4giysDfLQ/iNHxqq9rcOOoBG4YFY9F7zrNYFVNDb/euJG97e0AnJeRwX1jx5KfKCPesbKufhdfW/kUNt3CX+d/l0yXJ9YlnTV98fwtAU2cNcXear6y9FEMZfLTiVdzQc6YWJckxDmhqrWVH61dy9bG6ATyWdnZ3D1mHMUNGosr/KyqDhIyDj1+SLKVrHgLy/cGARiXaeeBaR7S4ixdjhs0DF4qLubF4mJCpolV07i2sJCbhw3DeYxWqTjzvrriSdY37OZLA6by3aLPx7qcs6Yvnr8loImzImxG+MrSRyltqWFe9ih+PulauTBAiNNkKsWfy8t5dOtWgoZBnMXGZfnj8PoSWb43iD9y6OU9z21hfr6L8/Od5Hui4erd3X5+9VEL/ogiyaHzg2keJvdzHPU8e9va+PWmTayqqQEgKy6Oe4qKmNWvn/wen2UfHyjj9lXPYNet/G3+d0l39Y1zWV88f0tAE2fFwdZmkj2eP827W1qbQpym/e3t/N+6daytO4Bmesiw5xIKeWg7bE5/VrzO+fku5uc7GZxsPWaYqmqJ8MMVzZQ1RQC4dkQ8t41JwHpEy1MpxbLqan6zeTM1Ph8A07KyuG/MGHIS5Pf5bFFKcduKJ9nYWMHVA6dz7+hLYl3SWdEXz98S0MQZt7N5Hzcs+wOGMnlo4jUskO2chDhlSikWVlTy6w3lhELJWMw0UPbO+1OdOnPznczPdzIyzXZCI1xBQ/HoulbeLo0Gr9FpNh6YkURWvOWox/ojEZ7fuZNXSkqIKIW94+KC64cOxWE5+vGi+62pK+Wbq5/FoVv524LvkdYHroTvi+dvCWjijJLWphDdQynF2tp2frF2L9VeJxrOzvsS7Rpz8qKhbGyG/agJ/yfqg6oAP1vjpT2sSLRr/PdUDzP6O4/52IqWFn61cSMfHzgAQP/4eO4dO5ZpHVeLijNHKcXNyx9nS1MV1w2aybdHfS7WJZ1xffH8LQFNnFHS2hTi9FS1RHivws/Csjbq/YeCl01XzMlzsaDAyaQsBzZL9/zhs681woMrvexoiPZKvzQsjtvHJh7z+EopFu3dy8ObN3MgEABgTr9+3D1mDFlxcd1Sjzi2VbXFfGvN8zgsNhYu+N45/9raF8/fEtDEGSOtTSFOTU2bwaJKP4srA5R2zA0DUJjEO1q5aWQ6lw9JxmE9M6PRYUPxxMZW3tgZbXkOS7HyoxlJ5CQe+8rN9nCYZ3bs4I2yMgylcFos3Dx8ONcMGYJNl+U2zwSlFDcs+wPbm/fylcGz+dbIi2Jd0hnVF8/fEtDEGXF4a/P8fqP5+aRrY12SED1avd/gg8oAiysDbK0/fPV+hak3gaWeq4alcfuoYWct9KzYG+Cnq720hBTxNo3vTnZzfr7ruI8v93r55caNbKivByA/IYHvjBvHpIyMs1JvX7OiZiff/vAFXBY7Cxd8jyRHfKxLOmP64vlbApo4I6S1KcSn8wZNlu4JsLgiwIa6EGbHq7EGpMQFqQ3tQVkayE908sNJkxiVknLWa6xtN3hwZTNbDkRD42VDXNw53n3c0TulFP+qquKRLVtoCkbXWZvfvz93FRWR4Tp+uBMnTynF9UsfZad3HzcNmcMdIz4T65LOmL54/paAJrqdtDaFOD5f2GT53iCLKwJ8eNiq/gCj0mwMTY3wQe1magPRzcq/PHgw3xg5MqYLw0ZMxbOb23h5WzsKGJRk5cczkjrXUzuW1lCIp7Zv58/l5ZhAnNXKbcOH86XBg7FK27PbLNm/jfs+eok4i52FF3wfj/3cnPvXF8/fEtBEt5LWphBHC0YUq6uDLKr0s2rf0av6n5/vZEZ/O3+t2MHrZWUoIDsujv+ZMIGJPag9+NH+IP+7yktTwMRl1bh3kpvPDPzkUbHi5mZ+sWFD5y4Hg9xuvjNuHOPS0s5Gyec8pRTXLnmEkpb93Fo4j68PvyDWJZ0RffH8LQFNdKsndvyHZ0rel9am6PMipuLj/SEWVfpZvieI77BV/XMTLcwvcHJ+vosCj5XtjY38aO1aKlpbAbi0oIC7iopIsNliVf5x1fsN/nell3UdG61/dqCLuycl4rIef1TMVIp3Kip4dOtWvKGOz8vL45ujR5PqPPYyHuLEvV+9le9+/DLxVgcLF3wP9zk4itYXz98S0ES3Oby1+bOJ1zBfWpuijzFMxaa6EO9VBlhaFaAldOjlNTNO5/yC6Kr+QzpW9Q+bJs/t2MGLxcUYSpHqdPJf48czIzv7zNbpayJ8YBf27BHo9pOfF2aYipe2tfPcljZMBfluCz+ekcSg5E8OlN5gkMe2beNvu3ejgASbja+PHMnlAwdikfURT5mpTK7+4GHKW2v56tD5fHXY/FiX1O364vlbAproFmEzwvVLH6WspYb5/UbzM2ltij5CKcW2+jCLKgN8UBmgIWB23pfi1JmX7+T8jlX99cNCSLnXy4/WrqW4uRmITqT/7tixeBxH74XZHTWGD5QRKF2Ov3wFob2bAYUlIR3PvG8RN/KiU1pAekNtiB+tbKbeb2K3wLcnurlkkOtTj7WtsZGfb9jQ+bUPTUriO2PHMjo19RS+OgGwaN9mvr/2VRJtThYu+D4JtnNrZLIvnr8loIluIa1N0ZcopShrirCoMsDiSj817YdCWaJdY06uk/kFx17V31CKV0tKeHL7dsKmidtu57tjx7IgN7dbazTDAYKVH+MvW0GgbDlGS21H8VacvjHYgyMIObYRiNuAvf9okhbch6PfyJN+nqaAyf+taubD/dHW5fn5Tr472U287ZMvBDCU4u1du3hi2zZaw9ErRD9fUMAdo0adkZB6rjOVyVUf/I5drXV8fdgCbh16fqxL6lZ98fwtAU2cNmltir6iqiXCoopoKKtsOTTT32XVmNnfwfxPWdV/T1sbP167ls0NDUB0s/H/Hj+etG5afiLSUkugbAX+suUEKz5CRYKd9+l6IvHWS7DXDEALHKovYm3A515EyFFK/JhL8cy5A0vCyU3gN5Xite3tPLWpDUNBToKFH89MYmjKp8+hawwEeHTrVv5RWQmA227njlGjuLSgoMuIo/h07+7dxH+vew23zcXCBd8n3nbuBN2+eP6WgCZOi7Q2xbmups1gcceq/iWHrepv12FqjoP5BS6m9nPg/IRV/ZVSvLVrF49s2ULAMIizWvl2URGXFhSc1t60yjQI7d8ebV2WLSdcV9Llfos7E2fuHFxNRbA1DIFo/VqyC8u4HCIfVUFbdOQrZK+g3b0IM6EV94xbSZx4FZrVftRzfpKtB0I8sKKZWp+JTYc7xidyRWHcCX2NG+vr+eWGDZS1RJcXGZmSwnfHjmVYcvJJ1dCXGcrkS+//lsq2A9wx/EJuKpwb65K6TV88f0tAE6fl8R3/4dmS90nuaG0mS2tTnAMa/AYfVEUXkN1y2Kr+Fg3Oy3Zwfr6TmbmOT23jAdT6fPzfunV8VFcHwPj0dH4wYQL94k9t1Xcz0Epg9xr8ZcsJlK/C9DUddq+GvX8RrkEzcKRNRtsQxlhTCZFoC1bLSsR6QSGWCf3RLDrKHybynxIiH5R1Pibg2oIv8QP0dA9J8+/BOXjmSYXIlqDJQ2u8LN8bHb2b2d/B/VM8uB2f/r2KmCZvlpfz1Pbt+CIRdODygQP52siRuO0nFxb7qn/u2cAP17+Bxx7HwgXfI856boyi9cXztwQ0ccq6tDYnXcv8fqNjXZIQp6ylY1X/RZUBNtR2XdV/XKad8/OdzM51kuQ8sUVWD66o/+tNm2gLh3HoOt8YNYovDR580q27cEMlgbLl+MtWENyzHsxD7VXNkYBz4FRcg2fiHDgNrVknsqgUY91eDn4RWkEytgsK0Udlo+lHP7fZ6COycDvGx3uitWsR/PEf4k9YhWPweJLm34stbcAJ16uU4i8lPv6wvpWwCVnxOg/OSGJU2omFrAN+P49s2cJ/9kTrSXY4uHP0aD6bl3daI459QcQ0+NL7v6WqvZ47R1zEDUNmx7qkbtEXz98S0MQpkdamOBf4wiYr9gZZdIxV/Uem2Tg/38m8PCdpcZaTOm5jIMDPN2xgSXV19FjJyfxw4kQKTvB1RxlhglUb8JdHJ/hHGqu63G9Nycc1ZCbOwTNx9B+DZrFh7Gog8p8SzK01nY/Th2VgvaAQfUjaCQUbs6qJ8NtbMUuje2maug9f4jICCZtImPhFPDO/iu5MPNFvAzsbwjywopl9bQYWDb42NpGrhsedcEBdW1fHLzdu7FwfbkxqKt8dN47BHs8J19AXvVO1jgc3vEmyPZ6/L/gerpNsVfdEffH8LQFNnBJpbYreKhhRrKkO8t4xVvUf3LGq//n5TvolnNrWSkv27eNnGzbQFAxi0TRuGzGC6wsLP3V7I6O9kUD5ymjrctcaVKj90J26FUfeBFyDZ+AcPBNbSvSKT6UU5vbaaDArj154gAaWsTnRYJabdPTzmGFKqhZRWfsR+ZnnMSz/QjTtUG1KKcytNYT/uhVV2wZAxNKAz72YSHIdnrl3ED/m82j6iYXW9rDJLz5sYXFlAIAp/ez899Qkkk9wJDJsmrxWWsqzO3YQMAwsmsaXBg3i1hEjeuRCvj1BxDS4YvGv2edr5NsjP8d1g2fGuqTT1hfP3xLQxEnb0byXG5c9Jq1N0Wt80qr+/RMtLDhsVf9T1RoK8etNm/hXVXS0a5DbzYOTJlGYlHTMxyulCNeV4C9dTqBsOaHqbcChuvS4lM5A5hxwHvphfwQpU2Gs30fkvRLUPm/0gxYNy+Q8rOcPQc88epQrEGphU/lbbCh5nTZ/XefH0zyDmTH6GwzKmd1llE0ZJsaqCsL/2NF5IUHYXkW7+z20XDdJC+7DmTf+hL43SikWlvv53doWQgakuXQemJ7EuMwTH9mp8fn43ebNfLBvX7Rup5O7iopY0L+/tD2P4W+VH/O/G/9CqiOBv83/Ls5ePorWF8/fEtDESQkZEa5f+nvKW2tZ0K+IhyZdE+uShDgmw1RsOhBiUUWAJUes6p8RpzM/38X8gkOr+p+OD2tr+b9166jz+9GB6woLuW3ECOyWrqNMZthPsOLjaCgrX4HRWtflflvWMFyDZuAcMhN79oguI1sAKmxgfFhFZFEpqr5jhM1uwTpjANZ5g9GSjl6uo6m1ivUlr7Fl19+IGNFRrDhHCrmpRVQcWEswHB0ly0oZxYyib5CfOblrUPOHibzXcSFB+OCFBFvxJX6AY/R5JM27C6vnxHY+KG8K88MVzVS2GOga3Dw6getHxh+1VtwnWV1Tw682bmRve/Trn5ieznfGjj3h9nFfETENLl/8K6p9Tdw76mKuHjQj1iWdlr54/paAJk6KtDZFT6aUYltDmMUVAd6vCtDgP7SAbLJTZ15edAHZI1f1P1X+SITfb9nCX3btAqB/fDwPTJpE0WEr4ke8+6Nty7IVBCvXdlmbTLM5cRRM7hgpm4E18dgbo6tAmMiK3UTeL4eWaMgi3o51ziCsMwegJXS9Uk8pxd4D61lX/Apl+5ZycGQuJTGffvZszJrtGMFWbAmZmP1GUFK7qjO85WZMZEbRHeSkjelyTLPJR+SdHRgfVYECRQR//EcEkteSMP1qEqdcj2779PXcfGGT365t4V+7os83IcvOD6d5SHWd+Dy/oGHwckkJL+7cSdA0sWoa1xQWcvOwYbispz4Keq55u+IjfrLpLdIcifxtwXdxWHpvS7gvnr8loIkTJq1N0RMppShrjrC4IsDiygD72w9NKju4qv/5Hav6W09ipObTbKqv58dr13aO5Fw5cCDfHD0ap64R2rclOsG/dDnhA2VdPs/iyY5ecTl4Js78CWifsAyCag0SWVpOZOku8EeX+9CSXFjPH4xlWgGao2sYMcwwxVXvsa74FWqbdnR+vJ9nKElBRaS+BI3o90DTLCgV/V65s8bhT8lkx95FGGb0eQZkz2BG0TfITB7W5TnMPc3RCwlKDkT/rfnwJS4nnL2PpPPvxDV8wQmNSP5rl59ff9RCwFAkO3V+OM3DpOyTWxJiX1sbv9m0iRU10QsjsuLiuLuoiNn9+knbk+jFXJct+iW1fi/fGX0pXx44LdYlnbK+eP6WgCZOiLQ2RU9T1RJhcWWARRXHXtX//Hwn52Uff1X/UxU0DJ7evp2XS0pQQIbLxX8XjaCopaRjbbKVmH7voU/QdOw5RbiGzMQ1eCbWtIGfGh7MRh+RxaUYqyohHP3atMwErPMLsUzKRbN2bX0ea36ZRbeTGTcYo8mPP2SnXUumTUsBMwflS8MW8ZDr+ogk2zsoFUbTLGQWfo56a4TtVf/uDG+FuQuYPvrrpLoPLbNx8OKE8NtbUTXRKywNSyPt7sVoQ+JIuuA+7Fldg92xVHoj/HBFM+XNETTgupHx3FKUcNJBell1Nb/ZtIn9Ph8AUzMzuXfsWHITZIT/z7vX8LPNfyXD6eav87+L3dI7Rxj74vlbApo4IY/teJfnSj6Q1qaIqZp2g/c7QtmxVvU/P9/FtJxPXtX/dBQ3N/Pgxx+zq2O1+wVxYW5uWIZtz1pQh61N5kzENXAaziEzcQ6YiiUu6YSOb+5vIfJeCcbaw9Ywy0uKrmFW1A9N1zBMRUtI0eA3qWysYUPFGsrrduMzEwmSQog0wioZv/IQ0KIXC2gK8ts1RnktjGzWGeG14I5o7HAbvJezj/yEV8nQ/oWGwu5MJmf0VVS0l7Oz6j+AQtN0RhR8jmkjv4YnoV9nvcowMVZXEv7Hdmg9eCHBHtrdi3CcNxnP7G9gif/knQCCEcUj61r4W5kfgKJ0Gw9MTyIz/uSWNglEIrxQXMzLJSWETRO7rnP90KF8ZehQnJaTO9a5JGREuGzRL6gLtPD9osu4csCUWJd0Svri+VsCmvhU25v2ctPyaGvz55Ou5XxpbYqzqLFjVf9Fx1jVf1K2nfPzXczs7yDBfmLLNpyKiGny4o7tPLuzGAPwGH6+VvMPzms7tLWSNW1g51WXjv5FaPqJj1QYuxsIvFuCftgaZgf6p7BhVAHbkpNoCCoa/YpGv0lT0OxcRPd4dAUD2nRGenVGNeuM8OrEG8f//qxJjfB+ThWDXC+Rp95HQ+FJG06/0VeztXoxZfuWRI+rWyka+AWmjLyVBFd65+erQJjIolIii0s7LyQIOrfhS/uQxHlXkzDhi2ifMv9pcYWfn3/Ygi+icNs1/nuqh+n9nZ/ynTtaVWsrv9y4sXPnhn5xcdw7diwzsk/sQoZz0Ru7VvHLLX8n0+Xhr/O/g+0k/m/2FH3x/C0BTXwiaW2KWGgJmizbE+C9Y6zqP7ZjVf85J7Gq/6ky2urZuWMFP6vyUkJ01Hhy606+WvtvPIRx5k3AOXgmrsEzsCb3P+rzgxFFY8CkwW/SGDBp9B/2vs8gbW8Dc0oqGdF0qCW6IjmV13P6U5zwyQvC2mnGSSMJZjMeo4nCNp3BXjcF3iyy2vKwGkfM53JAW0476+O3835cBZVOnZvKhzFj7wh0NAwU/8mOsCK7guH2FxhkrkBD0X/I50gevICPS16lsvZDAKwWJ+OGfInzht+Iy5HU+RSq2U/4ne0Ya6JLjSgMAvEfE8qvwvOZO3F9yhyofa3RlmdxY3R09MvD4vj62MSTblMrpXh/3z5+u3kzB/zRkblZ2dncPWbMKW+x1ZsFjTCff+8X1Adb+e8xl/OFgvNiXdJJ64vnbwlo4hNJa1OcLZ2r+lcG+Gh/8ODWkACMSLUxv+DUVvU/GUqZhGuK8Zctx1e2grcDcbyWNoeQbiPe8HNr8yrmZ2cTLJhDe8ZYmiJ2GgOqa/A67P328NEvr7pSTG9s4KrqvRS2dywEq2ksTktnYV5/fB4nKSpActhLcns9ia378Nn2Up+4B2z1OGgkPtLOwOah9GsaQ3LLWBLbRmEx47o8j+YEbbDGnsxm3rOu55/abtq1o0dO8lo9fKOkiNF10Tlmfovir/3DfJxZzlj9RYaYq7HZ4hgy7las6UNYtfVJqhs2A2C3xjNx2HVMGHotDtuh1wZzr5fw25sxizt2JND8+BKXwxgXSQu+jS0l77g/g5CheGJjK3/aGZ1PNjzVxo9meE5p4eD2cJhnd+zg9bIyDKVwWCzcNGwY1w4ZctQSKOe618pX8Out79AvLpm3zr8P6wkuNNxT9MXztwQ0cVzS2hRnWtBQrNkXDWWr9gUIHraq/6AkK/MLTm9V/xNhhnwEdn9EXelH1FbsoDGoUWXP4V9J06i1ZaIpO27NSordTYthxxtUnMyLpl2HFJdOugPm1NYxs7SK5JZo+DAsGi0FLszUJhKbynDUVEAk2sZtdgTZlFHPjtQmTGykt4ygX9O4aChrHYnF7Nr+0+LANsSCf0CY9Z5q3glvYUNTHQaHRp/sKsggu48RqR6SXFbW1QXZ2GYFTWN0Qzp3lEwgtzm61EejXfF6foht6WVMNl9iiLmaBE8eIyffS5vVZOXmx6hrLgbAZU9i0vAbGDfkS9is0aU2lFKYO+oIv7UJVdPe8fU20e5ZgmP2BNwzbumy+O6Rlu8J8NM1XlpDigSbxvemeJibd/ItT4BdLS38csMG1tdHA2NeQgL3jR3L5MzMUzpebxQwwnz+vZ/TEGzjB2Ov4PP5k2Jd0knpi+dvCWjimEJGhOuW/p5drbUsyCnioYnS2hTd4+Cq/osr/Sw7zqr+8/JdDDiNVf0P8oVV56hWZ6vRb1LvbeVAYxON7UEaI3a8liQM7cTXiNI1SHbopLh0Ulwaqc6D7+uH3u94G28aGEtLiXxQDm0dFzboEbCUg6UcTQt1HlehqE6JsDnLT7s/jazmsWQ2jyW9ZQQWs+tK8MoVwj7Mjq3Qxp4sLx+wi+U1FZS1NHZ5XILpJUOvJisuBNp+av17utw/JPUCylsyKA26QMGs/bl8tWwCye3R18i9LpOXBoSpTCplmvkyQ8zVZOXNZMR532ZvSzGrtjxBY2sFAPHONKaMvJWigV/A0jHnTJkKY00l4b9v6fz6w7Y9+DM/Jv6iLxJfdPFRC/IeVNNm8ODKZrZ2zD38wpA4vjkhEccpXJmrlOLdPXt4ePNmGoPRtejOz8nhrqIiMuPiPuWzzw0vly3nd9v+QU5cCn85/95eNYrWF8/fEtDEMf1h+7s8Xxptbb457x6SHH1v3oboPgdX9V9cEWDJngDe4NGr+p9f4KTwBFb1DxvR0NV0WOBqOEYIawyY+COfeKijWLQIEYIoLUySA2b0SyXf7TwqeHkc2nFXv1dtLZj7KjF3V2JsaETtd4J5MPz5wVoO1go0LQLxieg5+RgZ+ezxW2jcEyGxLp/UlmFYVNfAGLI1YuTUkzAmA0dROuss+1hWU8HKmioagr7DCjBJUrW4qcRh2YepdQ1sBjYcZjKacuK31GIliIbOgOQL2O5NYV8kHqupc0nlIK7dNR5XKDqXbbvb4MWBYZoTSpkeeYWhrGXQ6OsYVHQ9JfuWsGrrk7T49gPgju/HtFFfY0T+Z9E7QoAKRogsLiXyn53Q8XMJOrcTGrwHz8XfwNG/6Jjfz4ipeHpTG69sj47CDU628uMZSeS5Ty3At4XDPLltG38uL8cEXBYLt44YwVWDB3/qfqm9nT8S4tL3fk5TqJ0Hx32Ri/MmxLqkE9YXz98S0MRRpLUpuoNSiu0NYRZXBni/MkD9MVb1Pz/fyaj0aBDxBqNLR3xa8Dp8y6YT4SBMktGAJ9JAktGEx2giyWwmzR1PRr98sgqGs9PQeXLHRlojIWy6ztdHjuTqIUOwfEJYVEqBtwlzXwXmvkrUvsro22YfhAeDUQB0hAitDdzV6AMdWHLzIW0ARrAAf5VO69Zm7HVJ6KrraEbQVkerexOhzL3EjUoikpfFh02NfNjsZbMvTPiw1qVFhXCzF4dWiVPbg0ULYqITIoGQSkQ33URIpE1LxK8fahNalUE/oxKLtRwrITQs5HgWsLU5mQaVQFzYxtW7hnFpZRFWI1rfqrQILw8IYzjKmB55hdGOMkZOuYuM/Lls3f1X1mx7lvZAtJWY4i5g+qjbKcw9v3OUTDX7Cf9jG5E1VWhK67iQYC1qkhPPhd847m4Ka6qD/N+qZpqDCpdV4zvnublgwKfvXHA8Jc3N/GLDBrY0RgPsQLeb74wdy/j09E/5zN7txdKl/H77v8iLT+NP8+7uNaNoffH8LQFNdCGtTXE6lFKUN0cXkH2vIkBN26FJZQ6rxuAkG9nxFmwWjaaDk+sDJs0BE+MkXoksGqQe1kZMceqkODWSjCYSmrYTX/MRcTUfkxRpwKmiWwrpLg/OgdOiq/gPnIructMcDPLLjRtZtHcvAEOTknhw0iQGHvH6oEwT1XgAdUQYo731sMckQGQIGLlAx0hMkoZlSib6pJEY++MIFYcJFYcx9uloqmv4a3Psp8m9EV/CRlrdmwg6aqjVkyh15FFqz2e/tWtwsKtWXFolLq0KK17CWjxBEgmpaBgLEA/HCpgKBviD5Po11nnstFvBqiL0MyqxWsuxEEbHQmrCfLa1pNJKPKn+OG4uHcXsfUPR0IhoinezI7yZF8Zu3cX0yCtMTmunaPp3ifPksaH0DT7a8SKBUPTq1IzkYcwY/Q0GZE/vHCE193kJ/WUDqqQp+m/Njz/pQ+wLxpA47dpj7rBQ74u2PDfWRVueFw9y8e2J7lNe985Uin9UVvLoli00h6Kt5s/k5fGt0aNJdZ7afLeezhcJcsl7P8cb8vHj8V/ms7njYl3SCemL528JaKKLg63NFEcCf5p7t7Q2xVGChuoc1Tp4xeJub4Rt9WGqvEaXOWVwcifOJIcWDV6doatjXper6/uJdg1d01CRIIGqdQRKV+AvW47hre5yPFv6oI5lMGZizxnVZW2yFfv385N162gMBrFoGjcNG8ZNw4ZhUQp1YD9qbzSMmdXRQEYwcFS9hq4IJeWi+wZha0rq3EapPbmVxiQ/EV868U2FuNry0ejaPmtx7aU2aSMHPBtpS9wI9loMLOy1ZLPLls9uax6t+mGT6JXCoR3Arh1AowUDnZCWSEgloI5xdSaAVYVIC7dR1KIY15xCYYuH3HYrcUbHpue6hb/1C/BcQTvtVrCpCNlGBVbrLiyEsWAn3jmHHe0ZBDQX+a1JfK14DGMO5APRKz7fyg2zMCeCW4sGtflDshgx6Rso3cLa4ldYW/wy4Ui0BZuTNpYZRXeQm3GotWbsqCX05jqoi84LMyzN+LM2Ev+FS3ENnXdUy9swFS9sbeOFLe0ooMBj5cczPAxMOvV9Jr2hEE9s3crbu3ejgHirla+PHMnlAweek23P50s+4A873iU/IZ0/zbsby3HmAPYkffH8LQFNdDq8tfmLSdcxr9+oWJckzpKIqWgOdISuT1g2otFv0naMpSM+SbxNI8Wpdw1ersM+1vE2yamf0BY/RuuB6D6XZcsJ7P4IFfYfutNix1kwCefgGdFtlTxHL07aFg7zu82bWVhRAUC+w8Y9Tj8FjbsI1Ffib9lPUA8QtEYIWSKELAZhi0HYYmJYIaIrDGWS0ppH4f7pZLQO7Dx2qy1CyMzH4R951PN6XZXUJG+kNmkjtckbMaz1JBgQwUmFNY/d1nwqrTmEu1ysEMGKFzQfEUzM41zIoCsDF20kmC0MbI8wrjmVkW055La4SA6EjorJBhaCFgdxRjQ4BXQLf+8X4tmC1o6gFibL2I3NuhsLESzKgdU2g9Jgf8KanaKGLG4vHk+eNw2AJrvJq/lh3s8ySFW7mK3e5JIJ5zFgxOUEwq18tOMFNpb+iYgRDWH5mVOYUXQH2anR75MyFZEPKwn/dQNadKoZYds+woV7SbziVuwZg4/6mtfVBPnxSi8NAROHBe6e5OZzA12ntQfn9sZGfrFxIzuaoqN6hR4P3x03jtGpqad8zJ6oPRzk0vd+jjfs4ycTrubC/mNiXdKn6ovnbwloAuja2rwgZww/nXh1rEsSp0kpRWvoiHldx1k0tTlwcktHaESvODz0b0W/BAujM+xMyrKRk2jtDGOnu+2SUiah/TsIlEVHycI10U3ATRQRHVRCCpbcIvTsYZDan4gZIhRqIxxuJRjwEvQ3EAx6CQWaKA3Es9AymxbdDUoxLvwh00JLsXKCVxMoyG4eyrB9s0nyZx78EBEjm7BZgKkOLS7rS9hDfco2qtwfsc+zjoCjEU1BfAQMI5m98cMpcQ5mT8RO15HGCIogSgsAwa53KYWTduJVKwmajwLNwSR/AYWN/UhrtJLU3IbdCHGkNksC9fYMWvQ0VCSL+GA6CSGdgKucFG097kgzAH7dyjv9wjxT4KXdCnYVJtPYhc1agYUIunJhaFOpMPJRWJm1v4BbS8eR4ot+3XvjIrw4IMLaFJN0tYv51nf54pzPkdFvAm3+A6ze9gxbyt/GVNHv9+CcuUwffTvpSdEApoIRwu/tIPJeCVrHzgdB506Y6iDxs7dgcXm6fF1NAYP/XeXlo/3Rr3lBgZPvnOcmznbqI0KGUvxt924e37qVlnC0lXpJQQF3jBpFsuPkNnPvyZ4pXswTO99jYGIGr8/9NnoPH0Xri+dvCWgCkNZmb+KPHBrhOip4HfZ+U8A8uOvOCTne0hFxNo3aNoMdjWFKm8IcfMXQNBiTYWN+vos5eSe3qr9phqMhKtRGOBx9Gwq1Eg63EQq1EfI34q8vI9BUQbC1hogZIqJDRAdDg4iuobQTf+kKY2WVfS4b7dEV1N1mExcEFpJj7gEVzUCais4c04huNG61OLBZ47DZ43EFC+i/Zzwp1YlYI9FwoZRO2MwhbBSgNBeWHB17oU4wt5HN5htsqnmDsBHEACJKo07Lo8I6kHpLDhG6Tm5XhKAzlIVBA6sKEK9a8eCjn9PJyKSBjFMDSdvnwVUdxFlXT7yv6aivNaJZabKl0WRJw2em4Qz2I82XSFzk2EE5ops0u8tI0g8FtYBuZWG2ydMFjfhs4FAR0s0yHJYKdAw0M4EA57FPDcBiWrm4aijX7ioirvOKzzDPDzIoSzRJN3dxScI6vrzgcuITs2hu28fqrU+xvfIfKGUCGsPzP8O0UV8jOTG6gK1qCRB6ay3G2jo0ohcSBD1bsV40goRpl3dpVZtK8cr2dp7Z1Iahoku1/HhGEoUpp97yBGgKBnl0yxbeqawEwG2zcfuoUXx+wIBPvHikt2gLB7jkvZ/RGg7ws4nXMD/n2FfR9hR98fwtAU1Ia7OHChqKf+8K8PH+UEfwio6G+SMn9yubaNe6zuE6zppdhy8dcXBV/8WVAT48YlX/4alW5vbXmJYZxGNpPSxoHeP9I8JXONRGKNyGETl6Ptep0tRh4aojbOmHha79eg4L4y+hwRptU00N7OTLlJPkycKVMQhX6gAccSnYXSnYXMlYbPGoBgiXGIR2hlHbK7EGKtC1aM1KWQmbuZhZBdiGu9AHm7Rk17Cz+QO2VP6TfS2VNOuJNGop1Ou5+MnAwA2HzUGLjj5GA5lGO/FaKwmml2SjhVSzlTSznbGu8QwLzMFV58BS7yW+rRGbGT7yy6fN4sarp+EjHcKZpLZn4DSOPSfNZ1PUO0O02b24jABZvnhcoRRAw9BMvO4y3Pp63EYzAAHdxjvZiqcK6vHZwEmEdKMMe0dQU2YSbWoSdVoB8WEbX9o1issqRmA1D17xGeSlASY1LkWGuZsrM6v44ryLsdmcNHh3sXLrE5TsWRT9OWoWRg+4lCkjb8MdnwVEN48PvrYCdkVbo6YWIJi1E9eXP4tr8OQuX9vmuhAPrmymzmdi0+Gb4xO5vDDutFqeAJvq6/nFxo2UeaMXPIxITua748YxPPmTN4HvDZ7auYinihcxKDGT1+be1aNH0fri+btHBbRly5bxy1/+knXr1rF//37efvttLrvsss77lVI88MADPP300zQ3NzN9+nQef/xxhgwZckLH74s/4E8jrc2epz1k8tfSAH/a4achcOwhMKeFoyfPHyN4JTt17Ict6qmUSSTsIxRuIxzqGqLaA21saIzjo8Z0trT1I6wOneQz9H0M1VYz0Hif+EhFt32t2pGjV58QtjrfYsWuObEbVhxBsIfAalixG1ashgWbYcVmWNHcmbyWO57X7B5MIM1h578nTmJaVlaXGpRSGHWKcInRcTMxm0LY9D3YLZVoWjQUmbqNtuxkKoc3U5G+gf2Bcip9jdSGI7RrbtpJpI0UwloSmnIC9s6LBiC6L6VOGwk0kh9uZFDQR0qknpCjHt20kNI2jP7eofRrTSM5qEiI+DhSBCutlnT8KhrGEv3ZR23xBGACARuErNBmU3gtCqdqITvUSHLEi86h/1d+3UpIpeIIZqCwY2LS4i4j0bKexMOC2j+yNJ4cUIfPBi4M0lQ5dq0cHRPTTKfZPI8mvR/p/ni+UlrE3H2D0TqC33+yg7yWr2i1QaZZwfWDglwydRoWXae2cQcrtjzG7v0rgejo5djBV3LeiJuJd6ZEv+4d+wm9thqtMfr9NCzNhIfWkXDVtdhSDu2B6g2a/HS1l5X7ooFudq6D70/xkGg/veARMU3+XF7Ok9u344tE0IDLBw7k6yNH4rbbP/Xze6qWkI9L3vs57ZFgj//jvC+ev3tUQPvXv/7FypUrmTBhApdffvlRAe3nP/85Dz30EC+++CIDBgzgBz/4AVu2bGH79u04T+CS6L74A/40f9j+b54vXSKtzR6gKWDy5k4/b5X4aetY6ysjTueyQie5iVZSnBoeW5hESztW1bUlGD58hOqo0ayOx4baCIfb4bC5YwYW9mljKdVmsVubRkg79PP3qH0MUUsZbC4lhT1Hloum6ehY0NHQlALTQFNmNGAdYyTrmCNcaGgKLCZYFNgcbhzufjhTB2O3JWP3R7C2+LA2tmCpacDmC2NRepfgg6ahZfRDy8lHz8lHzymgLCGJH2/ZSmnHqMcFWRncU5CHR0VQgQBGjUm4wkZ4r4vI/kSUP9qa0whgs1Ri0/eiadElQlptPhblf8iinDJaLHHRMKYl4icehQWwdwQyBxpd22oW1U56uI5J3houqWkiO6hRnNpGZUISSb5hZLT1I8PnIC3gw6aOngfn1zz4VTpaOAtnMAtlpsARV4MamiJi0TA7viUHv7doJlZasdGIjWY07VAoM5Qdg0SseNG1jpYt4NPcWEMZmMqNQtGWWEa8dT0JhwW1f2ZZeWLAfnw2iNMUaZRhU2VoysQwc2hUk2jV0xnQksytxeMYWx8NUCFLmL/khvhrjkbIAtlqD7eMTuCCMUPQNY29BzawYvMf2HtgPQA2q4vxhVczadhXcNrdKFMRXllM5G+b0QLR73PYth81zUbi569Ft0eDqlKKN4t9PLahlYgJ2fEWHpzhYWTa6Qeper+f32/Zwr/3RH8fkux2vjl6NJ/Lz0fvpW3Px3f8h2dL3qfQnc0rc7512iOOZ0pfPH/3qIB2OE3TugQ0pRT9+vXj3nvv5b777gPA6/WSmZnJCy+8wFVXXXXUMYLBIMGOLT0g+gPOzc3tUz/gT7KtaQ83LXsME8UvJ13H3B7819O5rKbd4PXtfhaW+Tv3osx3W7isoIXslj/SWLuWUDgasJQyPvlgJ0ChsV8rotwylzKm4OfQ70IiDYxgNcMjy8mIbEc3jeOOZHUJSYfRLQ7srmRsrmRszmSsmhXN1wLeWmiuwWKqwwKZh7gBU3GmDsdmutFqajCrK6GuumNPyoMvTx1vdQ0SEtHiE8DpQrM7wKJDOIQKBYgEA7wen8VzqYOI6DqecIB7dq9lZr0iHBlKwBwK4WFYzK6TzU2tmYhrM56IH0vH11WR4OVPBVW8m+EjZDkseCkNcKApJxoO4LCFPpVJhmpikuHnIuVirD0dn0qkqimMrzFEYquFDH+IxEj7Ud83AxsBlYEWzkSPZGEaGaC6/uFpokDTUBqYWkcpcNiFBAoLrdhpwqo1oXPo/0tIs+G1J9PoTMHriANNw9NmkNXuJV7VY9UOrekWwo4WSSdipgIW2hPKcdnWHRbU7Pwzy8aTA6pptynidUWqOhTUwuZAGpiIT/Mwtj6b24rHU9ASbTG32f28lB9hUZYFU4McarhtYibzhqajAZU1a1i+5Q/UNm4HwGFLZNKwrzC+8GrstjhUKEJw4UeYS/ehmdFR3lD8bqyXFBI3/XOdAWNHQ5gfrmhmf5uBRYOvj0vkqmGn3/IEWHfgAL/csIHdrdHvWVFqKt8ZO5bCpKTTPvbZ5g35uOQ/P8NnhPjVedczJ/voK5B7AgloPciRAW3Xrl0MGjSIDRs2MHbs2M7HzZ49m7Fjx/Lwww8fdYwHH3yQH/3oR0d9vC/9gI8n2tp8hF2tddLajJHdzRFe2e7jvd3BzkVah6VY+GxWBYl1T3Gg9qNjfp6m6dhsCdjsidisLiwWBxbdhkWzdhnNUkYYIkHMcAAj1M6ecBZb9elst86kVU/rPF682cTIyApGRZaRa+xAP+J6Tt3qxO6MBi67MxmbMwm7PRGbNQGbJQ6bJQ675sCKA5uyoQUDhOqLCdZtJ9BUihlu7XI8qxaP3UzEHnJiDVrQTCOav07zvLnHmchPBk2hOD6dgtZE5tXCeY1WUtuG44h0/X0P60GqknZQm1BOdiDCiOakzmC2OamNlwtqWJ3W0lmTpjQs6KCcmCRy+CiWnTAjPS4uGjCe2ZmjCFYFad+xF3P3Xhz1NaQEGrEeEayVAkMloyKZmEb0pszkzm+COnjTut4O1hPRFEErhCwQ1qNXdsYZTbjDTV1G4kK6lQZXMvXOFFrt0YVrFXSOtlkU6CZ4fIrUNj8eowE7DZ2jhwoNw0jCMNMxVRz++HKctnXEm9GRyYBu599ZTh4fsJd2m0miDsmUYTdLQEHQHEo94wkRz+zqAdxcOo5Uf3RttwZXM08N1PgoxQYa5On13Da5P7MHJqABZfs+YMWWx2nwlgMQ50hh8oibGTP4CqwWB6bXT+D192FLAA0dhUk4oxLnNfNxDI5OeG8LmfzsQy9LqqJ/qE/LcfDfUz14HKc/1ypimrxWWsqzO3bgNwwsmsaVgwbx1REjSLCd3gUKZ9vBTsowTw4vzf5mjxxFk4DWgxwZ0FatWsX06dOprq4mO/vQ2kZf+tKX0DSNN95446hjyAja8UlrM3a214d5aZuP5XsOLYcwPlNnnmcd+t7HaGutAsDQ7NSmnE+rJY0hFj9DzAasoTbCAS+RQDOhQBPKPP7yEAqo0/PZYp3NVtssmvRDvzdO1U4RG5mkbWGEthenZsWm7NiUFVvEgs3UsIXAGlZYgmFUKBBdqDUU6BjZ6srQIoRsfkI2HyFrINrL7CxEwx5xYg+7sIfjsKhP2UPRYgWHC5xxaA4n2J2db5XdQavdpMEWoFFvp0FvoyHSSlVjEfYDUxnVlM6IpmQSIl1PkEGLn/KkcranVrI5tRbT9HNVVQZTGg6NpK1O8/JSQQ3lqa1YzGZQYZRKJEQaEZK6HM9DG1M9GUzyTCG5OoS1op6UA42ktdcTZ7Yd/bNQDoxIRmcYM40MwNH5czo8hEW06NyxiBXClmPflKZICPtI8zeS6m/CcdjFA2HdQq0rmf3xyRxwJWLoGm26QbPNpN4aoc5u0GQziKCY6Y1jeJsNp6mBArcfktoipISbsXMAq3ZoHpxpOomY6RhmMsG43djtRwS1zDieGLCHNrtBoq5I1sqwG6UopeM3R1HPGDTTxcVVw7imfDRx4ejXX+Xez2MDnRS7o/8usHq5dXI2swriQJnsrHqXVVufoLktuttDoiuTqaO+ysgBF2PRbRh7Gwi8tAh9X7SFaWpBjCGNxF1/BdbkTJRS/K3UzyPrWgiZ0WkDD0xPYkxG98wdq/X5+N3mzby/bx8AqU4nd40ezQW5uT0y6BxLc7CdS977OX4jxO8m38iMrGGxLukoEtB6kO4IaEfqiz/gY5HW5tmnlGJtTZiXt/lYV3PoZDo9WzHV8S7hPc8QDkVHmoK2dMoSZ7M6lEybdmjdJauKMCC0j6GhKgpDlaQZ3uiSEFixKht2ZcNqWGhSWay3TeVj52Sq7YcmUDvMIFO9mzm/eS0TWndiP8acpxP+elBEbGFCjhAhSzsRzd/lft20Yg/HYQ8lYI+40DrbgBq44tHSstAyc9CzctH6F6ClZaM5XGCPTlJvbN9Pffse6tv3Ut+2l4b2vdS376WhfR9GOEx2yzDyGseS2zSRnKYi4oyuJ1u/NUBp6j42pOxhY3IVpZ4aTM1kar2H63ZnMtobHcUxUXyYU8/beWupjK/AwE1A9cdHLgZxB79Y4kNWhrUlMq41neEtVrJ9bSSHG4lT9Wh0vZBDKQ1lpmB0BDHTyEKZHqKrxYGhR0NWyBqdyO+3QdgavUUs0WVEDh9NjKAI6woDRWIkQIavmWxfI3GRQwE/pOvsiU9ie5KHbZ44mmwmzRaDZquB12JE14sjjK414qCeBLOBzFCInY5x6EYa01pcTGxx4I7o0bXagpDUrkgJ+HFwABuNnXPYlNIxzBQiZgohx35sznXEHRbU3s1M4IkBVbTaI7gtCg8lOIxyTGWj3RxDA6OIC8fxpV2j+XzlsM4rPneklvOHgUnsc0WXIBlo93Hz5Axm5TlRKsLWXX9n9banafPXAZCUkMv0UV9nWP6FaJpOeGMpoTc+Qm+N/twMSwtqso34K69AtzsobQrzw+XN7GmNtjxvKUrgupHx3TZ3bE1tLb/auJE9bdGAPiE9nfvGjj1q27Ce6pFt/+KPZUsZkdSfF2fd0ePCZV88f/eagHYqLc4j9cUf8JGCRpjrl/6eXa11XJgzhp9Ia/OMMpVi+Z4QL231sbMxGogsGszK9jPOfJ1g9Zud88q8CaPYZBvDxrAHs+Nyd4/RynBfLSXObBptXUc5swPtTG6uY2pzPf39EVa7x7EkaQIlcfmdj7GZYc5r3cbc1k1MDu0izmaBI0alDn9fszsPu98Vvd8R/bipmQRrtuLftYrgnnWYocNalwqshgt7OBFHOBGL4YxeAJCS3jF5vwAtJw+9Xz6aO4lAuL0jcO2lvi0axBraoiGsyVeDOiz0WEwb/bzDyWscS17TWPo3j8JudF1HrM0aZmtKNVtSytmSWkW5uxZTj7602ZWFLzX359JSN9nejsnlWoRl/bbx1/wS9tgzSQgMJiWQTVoggXR/PFl+Dznt8fQL+kkyGnFoB7BqNej60VdWKtOJaWR2BLJMTCMdsBPRIWiFgB18dmhzRgMZWjTgRlcA62hpdrYuTYI6hHWdgCUa5hJDfvJam8hvbcQdPtQRCOk6WzwJrEyNZ2Wqg0YbmJoCzY/SfCitHXQfSvPhNNsZ2RJidItOUbPOiBYNp6mx32HyQWaYv2YMpskygBHtDmY1u8gMWtABRxhS2hRJPgMnjdg5gEU7tESKacYRMdMI2RuxOtbjUgeDmoP/ZCbyxIAqWuwhPBYTt9qJw9yNoeJoM8fTyFDS/YlcXzqWedWDosfTIqzL2sET+dk0dkz6H+gMcvOkNGblOTDNEJvK/sya7c/hD0bXgEvzDGbG6G8wKGd2tK363mqMf+9GD0c/P+JswPrZATjnzsMfUfz6oxberYh+DZOy7PxgmocUV/dsGB4yDF4pLeX5HTsImiYWTePqIUO4Zfhw4qyfMnIcY43BNi597+cEjDCPTLmJaZlDY11SF33x/N1rAtrBiwTuu+8+7r33XiD6A8vIyDjuRQJH6os/4CM9uv3fvHCwtTnvbpLs0to8E8KG4j8VQV7Z5qOqJRrAHBaYk3GAYb6nCDcuA8BApyZpNh+Z+VSqQ/suDghWc0l9GZPq4mnPGstgVxPVTjsf2l2ssdjYpCCi7OhGdvRmpnR+ro5iYirMz7UxMy+OhHgHmn7yJyBlmoTL1uPf+i6BPWsJte/h8CtANaVjDydgCydiMTyY6bkY2XmY2blEsvrRkhTHgXATDb6ajlsdTf4DNPvr8YV9mOgodBQWFHrnv62GkwEtQxjmHcXAxkHkN2RjM7ue3Ly2INuSm9ia0sSW5Fp2u6swdQOHxYrTYsei6VjDBvOqbFxZEU9GMBp4Q5pGWVwiB6xZJAWTSAvEkRCxAwpda8Wi12LVa7FotVj0hi5XPsLB0bHUQ2Eskomh3ARtGu0OaHNAvRNq46DZpmi1RghrEZIikBKxkhyxYFEd85+iXUVCOgR1CFqi7U00SAgFyWproKC1ifTD9gANaRofprh4P93BmjSDoNWP0tpRHUEMzYeVCKlBxehmjdFeGyNaLAxq0znyf4DJoZl0QV2xKi3M3zMy2JwwiuygnfmNcQz0W7EqDWsEUtoVSe0Kp2rHzgFsWnPHmCAoZcEwkwlZW9Gdm3GpFiAa1N7LSOKJARV4HcFoUDO34VBVhJWbVnMizdogBnpTuKV4PGMb+gEQsfhY0X8rz+QMoN0afY0a5Apz08QUZuU5iET8rC95lY93/pFgODpilZUyihlF3yA/czIqFMH/xj9hrR/djI5CR5IP4LhmJrZhw/jXLj+/+biVgKFIcer8cLqHiVndt0tAdXs7v9m0ieX79wOQ4XLx7aIi5uXk9LiRqcP9bus/eLl8OaOT83hu5u09qta+eP7uUQGtra2NsrIyAMaNG8dvfvMb5s6dS0pKCnl5efz85z/nZz/7WZdlNjZv3izLbJwgaW2eef6IYmGZn9e3+6nzRU/uCTaYnVJGfvPvwFcKQEBPYFfS+XwYzsDbMRfJogwm+Mq5bH81VnMSa7IvYVckHQCbRTEw26B/VpgDRoS1NSblTRqqc1K5QumNmJb9mJYaPA6NvAQ3uQluMuPi0dAImwYR0ySizOhb0yTc8X7YiBDx+wn72wn5mwmFfIRVJLp6PzoRzYKhdbzFgqFbiegWIpp2opskHZcjYmF4cxqjGjMY3ZjO0OZUbKprnGiyB9iaUseW5Aa2JreyJ8GHQpEUVqQFrKQH4kgLxJHpTyDH52JoWyuZkVosdKxhpmyEzHyCKhewAWEs+gGsWkcgs9SiH9GmBVCm67CRsUwCKp0Gl40aF+yNh4p42BVv0mILE7QEcZphkgxFXshGbsBJStiG0zxiWQyiYSxoAZ+u8FqjrUjMAIXeZsY1tTKo/dBIWVhTbEvyUZK0h8bELaSyC6veht+iaLAmcUDPwhbOIbs1k4GtiQxt1ckJHH217367k22JHrYmJrMtIYVGWxxTm6r4/IEqhrQfCoE7EyP8OzOOd1PGYlUuzm+Mp6jNjtPU0E1Iblckt4PTiGCjAZt2ACuH2q2GGUfEEgDnDpyHBbVFGSk8MaCCZoefJItBgrkVp9pLSKXhNSfRSn/G1/fj5uJxDGiNXvEZsB9gcd52XsoaQVDvCGpxBjdPTGZmrp1QuJWPd7zIupLXiBjRryE3YyIziu4gJ20MRkMT/j8uRC+P77yQwChoI+6Gz1FlT+KB5c3s8kbXNbthVDw3jk44of1gT9SK/fv51caN7PdFR14nZ2Rw39ix5CUmfspnxkZ9oJXPv/dzgmaER6fewpSME1tj9Gzoi+fvHhXQlixZwty5c4/6+A033MALL7zQuVDtU089RXNzMzNmzOCxxx6jsLDwhI7fF3/AB0lr88xqCZq8VeznzWI/3mD0VyrZoZiZuJbs+t9gMRoB8DoL2OqawoZwMhEtGkISjXbmeouZXWdlt+di1sVNwt8xYqQwCWsB7OrQYqQGilZLBK8eptVaj2ndj2nZD4e1no7YwPHogs/wH8aaMtAw0TWFRdOw6jo23YJNt+CKOBjcmErhgVQK69MY1JyCVXUNMQ2OdnYm1VGV0Eyz049TOchoTyXdn0hawEFSyE5C2HpoNArQCGLXK3Foe9E61vYylZOAmY9fT0S31GPXarBrddhoQDtiqyildEwzDTMSnTfWYMmgPC6RMrdGeSLsSlAcsIeIJ4zHMPAYJh5DIzliIyVsxxOx4TDBYXRdqUwRHaFqsplU2yPsdURothl4dQObEWRWQwNzD/gZ0Xroh2KgKE5qY0WawYo0F41WDwYJmDjRTCsDfQFGtXoZ1drMqLYmUsJd9980gSpXIqXxKeyKT6UyLhW/zYVDaThMDVvHfwCfZlJtjZAcrONzB3Yxu6EBW8e3pcmmeD9D462MEdTZ0pja4mSK10VSxzw1jy8a1uLCYKUFGwewad7O/1pKWYjoAZRjFw4OBbXFGWk8MWA3TQ4fyRaDOGMzLqrxq354zUkEyGRO9QC+UjKW9EB0VLnNtYt/FhTzl7RJhLTo78KgBJObxycxM9eOP9jIh9ufY1PZnzE6LpgYkD2DGUXfIDN5GKGSUoKvLMHaEL16WWkh1Hgb+hc/yyNbgywsj4bzsRk2HpieRHpc97Q8AQKGwYs7d/JSSQlh08Sm61xXWMiNQ4fi7IFtz19vWchru1YyJiWfZ2Z8vceMovXF83ePCmhnWl/8AR90sLWZ6kjgDWltdpt6n8EbO/z8tTTQuQVTlivMZPt7ZDY+jpUQJhr7EyexXh9OuXnoL+fcUC2faagip20YG9IvoVJldt4X1NtotFXTrGuYZhouZcdj2HAbVmyHnf4jWoBm+x6a7JW0Ww8c3MWcQ+tWHDHjnIP3KaymgV2FsaoIVgx0IliIgGaAplCWEKYZwEK482Yl2PE2hIUQDt0gzZVCZlwm6YnZZMT3JzOhP8kJOfiVk93tjVTV1RMqM0iodFFQk87glqwuwQrAbwnjs4UxNbCaFuLCNqx8+lIICjAtPhxaBXFUd0zYNwnqGn6rHQt+4lUdFo7eWso04zGNTCJGJvttmeyMT6M80cquBEVVfATdEsFtGCQZCo+hkRSx4InYsWIBBTYVDWMOA+xHvIqGNMV+u8EuZ4jtcWGarRHQTDTAHVbMbAgwq76dMV5f51dpAlvccSxJ87Ay1UOzPXrydhgGw9qbGdXayKjWJoa3NRFndh0hi2g6e1xJ7IlLZV/HLWCJXjihKRNPuJ2UUAupwRYygy1kBLwkGD7K47NZmzKEamcydVaTdtXG7MZdXFy3l/RQNOQawNoUxVuZeaxzFzDEZ2deUxz9ghY0pZEQjM5TSwxqaISwU49VO9C5Ab1SClP3oRxV2Ii2IwO6k/fT03liwG4anW2kWCK4jE04VQ0+CvCaEzHNNC6pHMaXy0cRH4mOMje6N7CwYDf/9Mw6LKgpbh7vYWaunTZfDau3PcPW3X/vnNtZmLuA6aO/Tqp7AP5lS4ksLMHqjwY10+bDsiCPZcMm8MuPW/FHFB6Hxv9MTWJqTvdujF7V2sqvN21iTW0tANlxcdw7Zgwz+/Xr1uc5XQf8LXx+0S8ImREen3Yrk9IHx7okoG+evyWg9QFbm/Zwc0drsycvRNib7G01eGWbj3/vCnRuSJ4b184E9SZZbW+gYxLAQUXSPD40cmgi2oLXlUmRbxdzG0z8+lw2JEwh2LHshImB17afJmsrfuVB41CYS4tTTMrWmJgFQT8U77VSud9OKHzoL32rLYTTVY3FUk4wsg9/OEi7aeK12mi1WgnqVpR2cDvwg9QRN05pdE0DbLqOpilS2l1Mr85nTEMWBa3JJAedRy1q2/ls2mHje8d43oh+aGkJnzVCm72NFkcTLY4WrCrAUG+IgW1edC0IWgClh9EIcOQf/UpZMI00QmYm1fZMdsRlst0dz554gxanQbwy8Rh0BrFE03pUzVpHILObCkdEcfARBwfiaq0Gu50GFU6TAzbVsS2VhkVBfNhgoreVqY1eRrS2d5kPtivOxTqPm42eRNotVpIjYYb4mhnoayI/0ERGqAXLEaOgIc1Kgz2ZelsKDfYkvBY3NiJ4wq0khVtxG63ER1qIV604VHvnXLHjabQmsya1kK2eARywWam1hBjUuo9LD1QwtqWl83FVLsU/MpP5Z/oI4g07FzTGM6TdhgUNZwhS2xQef/RHaVXNWPQDODl4MYlC6V5MWzVWLbpQb0B38kF6Jk8OqKDe6SXFEsZlbMSpDtDGELzmBBzhVL5cPppLKodi7Wh916S+z9/ya/kgfgHBg0EtEW4e52Zmrh1v2x5WbnmCnVXvAgpN0xlR8DmmjfwaiY40fG+9DasDWDrWxzMS2mm5ZCL/402jpCkaLK8eHsfXxiZ2a8tTKcUH1dX8dtMm6vzRUbuZ2dncM2YM/eJ7zh/Nv9j8N/60ezXjUwfw1IyvxbocoG+evyWgneOCRpjrlvye3W11fKb/WP5vwqdfTCGOr7QxwsvbfHxQFcTs+M0ZFFfP6NBzZAcXowHN1gyKE2axLpJGSIuGrzjTzwxvBcO9BZQmfoZq/dB+kAG9hUb7fpp1HWWmdy5JoWsGhnUXGqXoWiM6GjYsJNtcJOsOPIZGQlsK+HIIhHNRONBQ6Aocqp4EPsZiW0XQXk3HpkqYyk6bysansvGRgUl8dKslpaEpDYdmkmzVSbLZSbLHYdEcmKZGKBwh4jcxA4o4nx130Ik75CQh7CAxZCMhZMVu6FjUwWeCzuh1+JvD2orR1fAVEV0R0Q1CuklIjxCwRgjoEQIWk7BuogCbUjgMHU/ESlqkjnj2YdGbQQseNZEfQJlxmEYaYTOVgEolwKErY61EF2i1qK5bUUXHGlVniVrHSOSR21Sd+OnaBN0Pug90f5fQqEwbmPFguKIjlhYvWFrA0oKmH2sunB0MDxjxROfQGaC3o+k+sLRF39eOv8tE9FXeEr2pg2810IKghTprM9EpTsjnw9RCdrnSqbGbWMNNXHhgFwvqa3CZ0e91uwWWpDv4c+Zw6uxu5jXFM67VjtPUsUUgtQ2SfAqL0tBVAE0/QJxqQNcM6JgvqWz7sXTM+wvoTpakZ/PU/7P33+GSXOd5L/pba1Xo3L3z5AwMBgNgZgBGACRIgqBESVaybPlYtmwFB53jY1vHlq59/fhcX/v6PudaR7YlW8G2rERFSoIoSiIliiJFMZMgkcMgTZ7Zee/OXWGtdf9Y1WmHwQAckAQ43/PU0917V1fqqlpvvd/7vd+BMyzm15n0YnLpw+TsGk17K3V7kqnuNN//7CneceWg21YRc3Hug3xgb5vPhN9KJDOgVhH84Mkyb9sbsFJ/nk8//nM8f+kvAJDS445D38Vbjv8wuUjQ+bXfRZ2uIrOODenOmN97w938wrKr9r11yuf/fW+VnaXrm4rspCm/9PTT/Ppzz6GtJZSSv3vLLfytm28mUNcvvfpKY6Fb5zs/+h9IjOa/3fP3uWv60Nd6k74hx+8bAO11HjdSm9cnHl2Med8TXT53eaj1OVY4x62dn2VOP4IFLudv47HgJKdNbTDPjniFe9cjStEbeKL0VlKGbNl6cIk11aZnawiGFZzKW6MSPc/98/Cei/s40BpvS/SNExZkA9QqwlsBtYxQm1skWStBT4KexKbuFZvfYnlfjTAgeyDbIHtjOjdjfbTJYxCgOkhZR8kGUsQblmHRJsDaEIEEDFJ0EbKDkBvnHfmWBQclR0GYAhsAHlgPUFgjcSBPgug6QCj62zsEeS1V5AsTR3lk4jAXwpA10eWutfN8x+JZ9vaGKeNHq4oH5w7yudpO7mrmuXc9Ry1VKA2TbadT840ADEKskbdL+CLrCStXwL+CyPSTPZnjL6d3898PnGO+sMyUF5FLHya0Der2Dur2dg415vjBZ+7ixKrzw0xVg7O7fpsP7lJ80f92ehlQO1SV/OCJEm/fG7Cw+gSfeuxnObfweQA8lePUTX+dNx37u8jLl+j92p/iL+xDoLAY5g8X+X/OHOei8CkFgn/5lir37X3pQrSXG2caDX7ikUf40tISAHuKRX7s5EnesmPHS3zz1Y//69EP8LtnP8cbpw/zc/f8va/15nxDjt83ANrrOG6kNr+ysNbymUsxv/Zkh8eXXNpDYLktfJxjnZ9lmjPE+Jyp3MtD9hBLOFAgrOXW7jwn6jtY8t7Bkje82XblOqvBPHUpsWYuG4BBihTfvsg9S02+6dI0J1ZmkS/B1RgsVtiRV+cwb4TFZgO1q1wTIy2L7IAFkhlrJgCy14GELdvbzbH132Jp6Hgpa0HMQi6iGRgMEoPCCoVFZe8lOktrGiCwgpKWTEeSySRhIl3JBvBlpLeMEJu7FljrEdsaC2ovV8LdrAYT+EI5HZgY+ooN2yUJNJa2gqayg6mhDC2VUjCW3ZFiT+wxF/tIMUwIxsJyId/hbK7F5VyPWAl86xPYAN94BATktOJoI+JYfY2bGnVCM2T06r7HWqCwMqGSNqmm63hohltnsFhEv2pVJGOM1lZhrbMnHgVh1vquUXsGwrAZUENm7/uv/RPBafWwPmCxIgbRQUjnneaYyWx9CM7nd/GZqaM8Vd7JFc8w25nnW5bO8pb15UG6djEQ/NHcLH88e5DppMj9qwV2RwppBbWO06nl0v5COwRiiRyrDhTKFfAuI6SrXu3JHJ+c3sv/OHCey4UFprwe+fTL+LbHuj1FwxzjzpU9/OAzd3GgNQFAFMzzwp738aHZGg953zVg1EaB2sXFh/jUYz/D5ZXHAAi8Im+45W9x581/E/Olz5B88EmCZsbQSc2fHNzLz03toacU33O0wP96qkygrq9o3lrLRy5e5Kcfe4zlDPi+c/dufvSOO5grFF7i269ezHfW+c6P/gSp1fzCvf+Qk1MHvmbbAt944zfcAGiv27iR2nzlkRrLx845D7MX1h2j4AnDbeqTHI9+iSpXqMsaz1bewZfSOXrCpUNyOuKNrYSZzjHO5t6EGbBlKWvBJda8NpGZRDBkMZVY4cTaZR64EnLv/C7Cgd+XJZERnuxk1ZmOAbHWywZmP3uf/Z3h+ywht+W+bbzY+zqw0c8mA3ngNFTSji/LCsu6b1nMGebzhst5Tdu3JEKQSNcbMpWCREAiMx2ZAM8KdkaKgx3J7o5lT2+NyXSRHAtItYBU9c3ba6VjgGyOlDzPlQ5xeuImut7WbEYkLOvKsJ5ZV6wrTV1FNLwOVsZAjGc1B3t5bupUONKpUEvHxeB1L2UhTFjxDW0lqSaKcirIJ4ZCasinhmKimeu1mes1qCUd1MBYV2NJskKL3kjq0QxBkYPSm6pIx/cbxkAYCowHBNnv3P97H4hlv57F5WKt+x0TadHSrVvZlMDqsTPDILAmhzL5jGlLsbKHEB2QrYxVGxqpRCLkSxM38cWJIzyfL5KYBvctn+W9yxeppm6+WMAnp8o8uOMIS0GV96wWOdr2UVZQ7rn0Z7FPBFqNEisU7BJSdrcEap+a3s8v7D/PxeIVplSHvH4Ez6as2rvomJt41+XD/O1nTzIdueuqXXiW5/b+Mh+dPMhDahSoKX7wRJG37fE5O/9pPv3Yz7K4fhqAfFDjjcf+DicOfAfRhx+ET3XxYyfebwWCn997iD+bmeHIlM+/vbfGnvL1r75sJQn/46mn+J0XXkBbS14pfujYMf7GTTfhy6+8d+griX//yIP8/rkv8OaZm/iZu3/oa7IN/fhGGr/7cQOgvU7jvzz5YX7l+U/cSG2+jIi05cMv9PiNpzpcbrkBN5QJt9kPcVv6WxRY5UpwmCfzb+IpPYnNKIbZuMvJ5iRd+xaaanawvI5aY9WfpyE9rJkdsGWCmIOdC9w/n/Kuy7NMRcN0XCR7+CJCqjWE2uxafy3hruhRQOdt+fmVALxXHKKL8BaQ3gLCW0B4i2MDfz+MrmJNESE0wjpAYmxA1+yjbfehhY+RjtmKlaUnLV1l6CpDR6X0pCZVmkRqUmlIhcYKQd4ETKYBU7FPNRF41iKtQVmDtAaTASdhDL7R5LTJptHbowURZynMfvoydcUJopP9LcrEa9nyXhKEbZOStAEDJsyKjBnMRHAZwBsCaYtEb2pyv10YoKtCrBCU0mGqMkWidB5h846VI3HaOek0bo5VG65jIZjhM9O38KXKHuZ9zdHGRf7K4lmOtocdJk4XQz6wYx+fr+3grfUib2iGhEaSjxxQq/ZXby2INkWzhJKrCG8Z1BCoRTLHp6YO8ov7L3KudIEp1aKgH0FYxap9I1of5NvPHuOvvXgbxdRVr65XP8+ze36VT5ZP8kX/uwbFBIdqih+8o8jb9ng8d/HP+czjP89q8ywAxdw0bzn+wxybfgu99/823lNTKO0YunOFPD+3/wBPT0/w42+u8O4Dr04a/bl6nf/w8MM8trICwIFymR87eZI3zM6+xDevf1zurPJdH/2/0dbwi2/7Ee6Y3P/SX3qV4htp/O7HDYD2OownVs/zg5/8uRupzWuMdmz4/ed6vP/pDqs9dzkUZYfb0t/luP0DPLq8WHwjD8tjXOmzXxZu6Qh2dW9iTd2BzVgMTcJacJE1r0NspsbYsul4mXcsrPPA5TIHR3RliYiRIkJ6daQaVsxZKyCZxqYTjn0RqQM1QuOAwebpaoDgWsNasHho4ZEKj0S69xoH5IxQmAzgOWDno7SHr73s1eKLVaRaRHrzSG8RMbJfg/WYAKtnsekcJp1EiAgZzA+AmzUhJj6ASXYDGxmLIQhyQOhq7zUvBZaucjQcKBNdUE0HVlTXsWMiyZZtX3ZKEuuDDcF6jsVCIAQItKu4HAF5LwcrR9Kn6+XoqpCeCukq977r5YhUSCR9hIWCjgl0TCwlc70l9revkNdDfVuCj69zYPK4xH4PVAchGw6gkgz2OcXjicohPjt1M4+XqhSiZd6zdIb7VucJsuGl7kk+NLuDP57dw96oytvX81RTRZAMCwpkVtJrSSjYFTy5gPTmx4BaLEI+PXWYX9p/hRdLZ5hSDQrmUawtsGrfSBDv53ufv51vO+8qPi2G5ek/5fldv8lnC2/jC/53Egl3TfaB2r27Jc+c+zCfeeK/0eg45/9KcRd33/YPOGx20n3/HxJePorMdI1frFb57/v3c/uJaf7JXRVy3vX3CTPW8qFz5/ivTzzBWuT2/T179/JPbr+d6fxXV1/57x7+Xf7g/EPcPXuUn37rD3xV1z0a3yjj92jcAGivs7iR2rz2WOsZ3v9Ml98/3aWVuMugKte4Pf0Njtk/pSc8ni2/nS+ZvXSEeyovpB63tmsIfYpEDNsrtdUKq8ECTeGPsWV5HXHP8iL3X5GcWpkc6Mo0KUZ18WQLodYH4MFaQNew8SwkMw4oZRmsvr2ZHKk+HI9sUN8CuA0B3KsB8BIHYGTXvYrelstJKNBWNVreJHVvmqZXQ1rDzs4iO7vLgzRhV+ZZ9nfTFVMEGgJt8I0ZvHpa41n7ijm+PiCyGbCy2SeBcVWNsoWUrUyP1QYZAelLgDAYgrC+GF9lICyATAvo1qFB6C2rT7dfvgITYm0uew3Bhq4aFB9jPMfoyiTbhwgpIgQxQiRuYvPvay10VZHT1Z10fY/d3QV2dxbx7HDbEkL8NO/2BZuxhU2Eam2qoq2rKp+euoVPT+5nVaW8YfUs37Z0ntnYgQwNfG6ixh/M7aXpzfCu9QK7Ix9Pw2QLJjrgOYIQay2hbRDIRaT3AsK7MgBqCQEPTRzh5w8t8ULpOabUOgX9OJoaq/aNTLb38f3PneK+QcVnxPyO3+PFud/ni7n38PlRoFaFHzxR4e5d8OSZD/C5J/8n7d4yAJOVA9x9/B+w+0qb9A8fJazfjkChgY/MzvLxWw/wfzwwx8Hqq2M424hjfv7JJ3nwxRexQMHz+Pu33spfO3wY76uU9rzYXuGv/vlPoq3hl9/+v3HbxN6vyno3xjfC+L0xbgC011ncSG2+dMy3NL/5dIc/er5HlBWtTYnLnNC/zhH7cZbUHE+V7uVJPe2sGaxgV1RhV/cAKTfT94nXImbVv8Ca1yWxM4jM7V8ay6n1Ve6f73HvQpXciK4sUm0C0UV4a2MpPquLGSibxdocqQfrOcuXZg1PTFpWQ5wdhejzQaAMhKkl1MIZpqaQTwU7O4K9HcuOrmCqJwmMGLeOsEN92XhcC8CLQa2DWkOouhuot6gsdNqxvGNgbDaNuX8Nma2h9bxjmqwdTfuNitw3f06FJJEeifAwUrnuDFlGUFiDwKCsRlmDZ9PsfezaOokoAzO9wfuXtqoY3RaFtR6GAIuH44Asqs+CuSO+7fJGl+n6kXpY6zswlq1HZLYlDlbq7Jzps4P93+xqt/BhMcImHZwwWVo7yPZF0FElnqntAqnZ05lnrrc68osJjM3h6b5eLcHK1og1yLhdx4uFvfzFzC08VK6xpz3Pe5fOcmdjuLzzuZA/2LGHRyq7eGujzC3tAM+4goKpFgRZLYWwoExMIBfx/KcR3sUBUNP4PFU6zH++aZ3TlWeYVKsU9RMk7GDV3sWh9QP8wOm7uGPVFeokqs6l3e/j8tRH+Hz4V8aA2oFSwg+dmuTuXYZHn38/X3j6V+jFThc5O3ELdx/9AaYeeQrx6TZh9xgAXSn5/d272PPtR3nPLeVXzXX/6bU1fuLhh3lybQ2AI9UqP37yJCemp1+V9W2Mf/Pl9/NHF77M2+Zu4T+95e9+Vda5Mb4Rxu+NcQOgvY7iRmrz6nFm3XmYffRsRF9aNMdznNK/wT4+z5ncbTzqn+Ai7tzwTYGDnRkKya3A8HxpeUus+os0RYgwM7gB23K4FfOuhTXun88zGQ2F55Fq4RMjvbXBwAIuxUcyh41nsaaEVtDMWR6dMZyegKKUVPVL3PAtlCOodR37UOuCv4GYSYVltaBZLKQsFjVLBUOKQCLxU0mYSKY7kqmeZKIrqMSCQgzKGoRoIr15hL+IUIsIb6sG4oCpuFSsroKpZoBsBBD0U43SMVSjoM5alWnf7PUZ4AZ3NJ0ByyR7jUEkW2rfxvfHWcwOwKBVWQrby5jRjczFFts8qL4YmQZVlIM62mxGMfolxkHXS4GvccCV1fIOj/cAyL1EDIoxnCWHtYK2V+F0dZaQiL3tK1STocVJikKYPErnAOV0eLKZpUDHgW5P5Pns5C18bOYQbRvx9pUXeWD58qAbQkdK/mxmjj+b3s3+aJo3NkICI6l0YboF+WS4S9JafFbxg8eR/pnB9WSsz7n8Qf7rkS5fmHqcCblEyTxDl72sm1PcuXSEHzh9F/tbNbdNwRUu7/1FVopf5FOFbx0DavtyLX7ozknu3i348rO/wUOnf40kdXrQ3dMnecv+76by8c8intlNPnZWHyu+z0OnDvGe7z1KIXx1fMyMtfzBmTP87BNP0EhcdfO37t/PP7rtNiavoRf1VxLnW8t8z5//JAbL++77Rxyr7XlV17dVvN7H763iBkB7nUSkE77vL36as60l3rvnJP/uRmpzEE8uJ/zaEx0+eXEICvbYL3On+S1q4lmeLbyVh8VhmiIEK5iI59jV24dnDgwsV1MRsRpcYE11Se3sgC2b6lneubjOu69YDrWGJfGx7CFlF082xry7rFUudRnPYnUNrQTdwPLklOHpSVCeYGKkuba2mp6KEAiUVSgjqPYEU11JrSOo9cg8poaRCmjkYT0H9Tw0cy6N5xtLPtZUeoZKz1CMDYXEpQ4FBkGCUCsItYJUK44lk5tbJDnT1AmsngA9AbrGRo2YFgIjJKaf2hMtfDWPUs3sOABpDZvMgc25AX0AoqIBqBKiz7BlwGOgzxplheJs6oOxhGtLSY7aT2xg6QbTFu2yxsBXNo/dAMYyEDew+hiwYdnKR/Zh67TyZtZrAL76adJrBV/Aqu+x4oesBgHrfo66HxILxU3tFe6s1/FHhwErMrDmAwHWSlqqzAu1GYq6xd72FXJmaH8SiwAvDZGmgEuB9lm1fmHB8JgvBnP8ydytfKEyxa2NC3zr4jn294bXx5crVf54djex2sk99SKVVFHMCgrKEYMUPwZ828EPH0H5pwdAzVqPJe8A79sHH9j7EDW1QMk8R4fDNPUdvOvSMf7WcyeZity12io8w/K+X6cjnuXPKg/w2eA7BkBtt7/C3z0e8rYjVR565ld45Ln3k2q3nv1zb+GNE3dT+NOHsPNvpZI4CcTFYp7wr97O3jfuetXYtPUo4meeeIIPnj0LQNn3+ZHjx/nOQ4dQr2LfzH/9pd/mwxcf5r4dt/KTb/7+V20928XrefzeLm4AtNdJ3Ehtjoe1lofmE973RIcvL/QHE8Mh+xlOmd9GyDWeKt3L42YHWigCXWQu2kctPoyyw2PX9BZY9ZdokUPYWUCQSy33LEW8e77DqdX8UFcmErRq4YsOQtVHBiYB6SQ2noN0klQqYt/y7KTlyWlL6gsmR0CZsYZEpuSMT2AEpR5Uu67irdIFz7jBXWRpLyMMPd8Qe4ZUusE80IZQG8LU4GtXrbjBLCMTvq8h1Bp4ayDrW2iUBNZUSO0kMZN0mSJSRVIp0EqgpYMOkhSJzlKIGt+kBDohbzoEpuV6fJJhE/ppNTnclsE2bfVrGpzObWSiz4ZdS5XkBhA2AFUwBFMSa2XWxWGU9WL88xZucWPHdLBeF5vHy61TjuPMl7lmfZpB0FEBDT9P08u7ogCvQKTyxDJPogqkooASI6xOP90NpFjmgzZ+epkD7Su8aX2VktYb5vUH7Jq1iqaqcqFSpZI22NVdRGV6NQvEIk+YhJleLcHKJqg6YoNdR4rPE+VD/P6Oo2A6vHvpDG9dXxzxVAv4o9ldPFfax13NCrtinzCB6aa7BmSGcaUBZVP84BG84InBA4W1Hh27hz/eWeCXD30RFZ6naM/QtkeJ0jv4jrO38T0vHqegHbBaq36O3r4/Jm2d5w+m7+NTub8yAGo7xRX+5qEm7zi+n4eefR+Pv/D7GOv25ciu+zhp9tH+iy4za8cpa3cslvZU2f19d6L21q7pd3wl8fjKCv/h4Yd5tu7SsMcmJvjxkye5dXLyJb75yuJsc4m/9rH/iMXy6+/4xxytfnV7iL6ex+/t4gZAex3EjdTmMIy1/OWFmPc90eH0qruJSlJuNh/jhH0/a36Bx3Nv4BwTCCupJruZ7e2noHcPlpGIHqvBedZVRGrnEDaPtJZTq4b751vcs+SR7yv3sXT9dXJEmdh/OLDatOIYomQGLXxiz3K2ZnlyytLOj4AyCxZDKjWB8Qi1YKJt2dFMmW738E2cgTE3uWF5Y/Qv4/5Abze8T0DWwauDbCBUY0sTWI1PSomEEsYWEDaPZyyeNahrFuZbXHotYSB+s+BYtr6Nx1bfGQVhcfY5vUZdmBqCsD6bJbZivpypqzUFSCfcZHJuPtlzWirVd9VPGeXAHA85WNA1g6+xFO/LqMq01inajPDc+SNDeipHJHP0VJ6uV6Cr8iTKJ5EeqexX3MrhxmWYd5S9c5BUjG+xcNOC30PbeXZ1L/Om1WVmkxF9Yf83HIA1n6aqsFAqUkvWmInWBrNqBJoCQRo6Jk50sbKOUE1G7Tqshbaq8pGZY3y6NsNd6xd479J5aqk7N2Mh+MTkDJ+d3MvuaJZbuiF+Kphqw0Tb6TCHQE3jBU/gB48M2mVZ66P1Tr4wUeNXDz3GpdoTFLlE0x5HRrfzv7xwgveevxnPSiyGldmP4u/4FGZpgffvvIePF987AGpz9hzfs+Ms9926n0cv/BFPnftjrDWA4Jbd7+LgQokLT57grcsQWHeu2DfspvCdtyNqr07lZWoMv//ii/z8U0/RShIE8J0HD/Ijt91GNQiu+/r+1UO/yZ9eepR37jzOT7zpb1/35V8tXq/j99XiBkB7jceN1KaLRFs+ctaZy55vZOayRNxqPsQt9g+5kN/PI+oYdZEn1GWmooNMxgfxsh58FkvTm2fVX6JNYcCWHWoa7p+PeddCylQ0FPv3vCa+6KHkOkKOiv3zDpTFs2iRJ/EsV0qWx2egXoCaHQVlFi00gVHktGCqZdnViKh1e/i2hxS9zNU93gJwmZE0WT9VNtgKIM6+2wXhzG43NxAXYHNgC04zZgq4FkDXgCAGdw0HgjLIgiVBjA7ACFLKREyghQcixsg2UnTw6ODbLh4Rkviqa93SqqJfjSn6VZibvyOyakdsDptWQJfB+K4wIANiw0rEkeO5JfjaCLjMCGDTGZh86UO39f70PfJGU6wbAOY1hkGQSEUqnU3KELhlVinCwyBJ8Vgq1miF+WwvXD1rH6ytq4SmXGamd5E715c41N3gyzeiW7M2oK0qrORDJtMVyslw3kR4YPL4aaaTkk2sqrvWVSMPCdZKLuR281u7juGbDt+0eJZj7frg/6eLJf5sejdG7uNEu5g9yLj0p5/9JH2gpvxnCMIvuV6lOKBGuoML4TS/vf85Pr/7i0h1mYa9nVr7dv7Os6e4d/4AAFpErO79E2rVh7Hza/z6zjfzp9UHhkBNn+Hbyp/nrTdPc3r9Szx38WPutxOKY3NvZ+m5W5m9eIR3rLiCCKPAf/fN+A/cjMj5L/v3vJZY6fX4L48/zofPnwegGgT8o9tu49sOHEBex7Tni40Fvvfj/xmL5bfe+U85UvnqtaR6PY7fLxU3ANprPH76yQ/zq89/gqmwzPvf9aNUg69da5CvRXRTyx8+1+W3nu6y2MnMZW2T2+0H2SM+wfOF23icvaQE1OK9TEUHKem5wfcT0WElOM+6StB2B8LmmIws989r7p/vcag11FYlyrmr+7I1ps2yxnfVl/EcxpZIPMFy0fLEtGW5CBUxDsqsMPhGUUhgpmnY1ehRjnt4tosQXeezJTsIuZnh2jr0EIhJ97oV62St70CYKbrJFmCQ0mP4avspW0EsBanwsPgIG2JEgBYBWvpo4WGEh8VQ0ucpmYuZAYFBC0usFM4lq4dno8zmYfu92NI93yoHKqwP1nVKRMRbHhtrfLA+wvqZfkpi+4xaX+O2pW5rq5SjxkgyyKKR6GuCSqMmwc4A2EdnXRC0LZDaMlaXUWmBQCuCMf3gtVTRjnzeZJWiX5FNirE+dTXJ5dIsl8tVrFSbwFpXaRbVOrX4IifWFjjebo5UqjKiW3M9RDuyTDNUTKQrhCN6tUiEKB3i6ZxjSmXdNYrfYNcRk+eL1SN8bGqON61d5B2rVwiyVGrD8/jI9E4uFg5wa2eCcqqoZpWfuTRj1HQfqJ3OgFo7+30cUOsyw5/susJH932OpdI56vYE+9du5wdP38Vta+7+kHh1Gjf9OXP2cZLFOr+x88380cT9g16fc/oM7xYf5A0Hc5yNz3Nu6SEAlAyolr6dJ88+wPdeqHN7MzPuLXr4f+U21Fv3I9SrY5Hx8NIS/+GRR3ix4XwHb5+c5MdPneLmWu26reNffvE3+LPLj/HuXbfzf73x+67bcl8qXo/j90vFDYD2Go7HV8/zQ1lq8yff9P3ct/PWr/UmfdWiERl+73SX33mmSyN2p3DBrnDCPkhRPsEz+ZO8KKbJ6SpT0SEm4v141lVWWgwN/wqr3gptikg7Qy6Fe5YM756PObnquliCs9KI/Tp5OhvE/tKZyCZzGD1B6gnqOcsTU5aFiqvAzFYGfVCmFaUYdjZS5po9ikkPSSdLqzlwNZYitQJri1gT0tc9CTRWukbbrmKuBaK7NTtmStlUdhMhPQlNT9FVjmUxwkNaH98GhCaHFQ54aeEq+aRIUTZCEaFsD2l7WBkhbZfQNgl1EykSBJq+v9o1tTAasaro95LEZCyeKbj/i4wFVPVNVh4200ZZ6yOszHpZig2E0/YpRytcD0yE6xh6LdFf56DjgvUBD2M96n6OK2GOs4Uc50qCM0U4V4DlkCHTaS2FFIqpoJQISglUY8FkrJjoeUzEimqsKCeKUqIopJJiqgi1wDdicE5uH9oBdNnOOgB0XdWsiDf8Jv3jYLPjPFyutYJIVFgKZzhfmaadC4ffyMCa0621CNNLnFi7wonm2kirK8Z0a9bk6MkiPR8q6fpgPgv0RIEwCZA2cA8X3prb9hG7DmsFdTXFh2aP0CPmW5YvMBf3Btv0+doUj1X2MZvsZi7xKUUw1YRS7FaiNEir8fzT+OGXkbKVLdcBNfQsj9Ua/OneL/HlHU+zzB2cWjzBD5y+k73tGgC98DLJ7V9kbvVLdNbbvH/2bj4wfR/dEaD2juQ3OD7X5JJqstB43q1DTvGs+XEmF3fx986fZ3e/wfxsgeC7TyCPz70qhQSpMfz288/zC08/TSdNkcD3HD7MPzh+nJL/lTN4zzfm+Rsf/88IBL/1zn/K4crcS3/pOsTrbfy+lrgB0F6j8Y2a2lzuaH7r6S5/8FyXbpZZrNjL3G5/D+Mv8nhwnHUq1OJ9TEWHKOqhT1As244tkwnG7ETZkJOrhnfPa+5Z0uQHlhaGTrBKzvaQqjFWhUY6iU1mMek0qadoB5ZnJi2XqhAo4W64lswG1eIZSa1r2V1PmGl3yemu8+CSHQfKRqrc3Do8jCmCVY61ESn0gZhsOt+xLdmxEG1rmZh/ilhMokXoUlwZ0yXwIBOLC6tRtjcAXp6NUPSQNkLg/u6bXibu75vbDkHYS1UQjnuZ9UGYAlvMQFh+MFnjk/pN8NaRso4S7c0i+QG7trEdVR98acaAR1/zdc0pR8loSyzn9N//7N6v+QELOZ+lnGI5kKz4knUlSKTMwJQDXuVEUkoFxUQ6sJVKSomimKhrAFkvHak0aBVhlQNhUrRQoo0S3RGgbEZ+s9Hj0gfR2X4bB4wtPsKEIMaZHW1yNLxprpSmuVQuY6Uc06wZLPNBBPoSJ9cuc6qxiscIuzmiW7MmRyzyJJ6hZIbtoDSSWBTJJ44ldSnQtaywYHiuG+vzQm4Pn56Y5bbWAnc1Vgb/u5DL8+nJPRh5kANRkVzsLDoqXTIfNZDm6kBt3U/56O4n+fO9T/J8eIR3XbyT73v+BJNZxWe7/Dz+naeZPPNpWq2I35u+l9+bfTtd6VLEc/oM98W/xuHCaeaLgrXeItbCBfndPBn/bb55YZXvv3ieSurObXnzNP533Y58lQoJFrtdfuqxx/joxYsATIYh//iOO/jmvXu/YmD4Y194Hx+/8iTftPsE//4N/8v12NyXjNfT+H2tcQOgvUbjGy21eaGR8htPdfnwi13SLC00ZV/gqP0gjZzhCXUIpaeZig8zEe1D4QSyji27zIq/TMeWkXaWg00Hyt65kDIdDT2ouv46vsisMcbE/mVsMotNZklUQC+wPFezXKwBvnAaD9t3tbL4WjDVNuyuR0x1e/imi8xYDZe6HPfhMiaX6aQcY4XoODNYuZ4BsvFLVKNoy0naco6e2EHKDoQt4lkB1mSgKwNeGQBzn4d/k/S3oc8ybQXC9MtrYdQHYibE2hKaAik5UhFkGigBMkHZDqFtEtB2rBzpZuar70U28A7Lkm5jwvuXPG2y4+Vh8BHWQxrlenyOMGCjgE8jSUWAJsDiY22A0D5KOxNVZb9ygGWEayCvJVk1bPYqLVo5qxErY4To4dMkMG182yWwXTwbIclaTGUg9JWOtdaKsXPLsa4Fx0qaXAbmR9k1RY8ay7lpzlemaOf8MbBmgVUvpsMip1Yucqq5TMAGm5as16g1AanIY1RCaIfegInwSG0G1kQCas09mGyw64hFmS+V97DmwX3r8xS1O5+7UvKpyZ0shgfZF0+TSwVTWYcCabYHasb6iHQn6BkMgi9PX+Aje0/zmdo033b2DXz3meMUtGOfWnNPUr3jEoUnPkoz0jw4/TZ+b/btdKTT2PWB2m71eZbKIS3dYt0e4iH7r7DJDH/z4kW+e/4SXqY7VG/ai/dXbkVOvDr38C8sLPATjzzC+Zbb1zunp/mxU6c49BWMgafrl/m+v/hpBILfedePcqD86vcJfT2N39caNwDaazC+kVKbz646D7OPn48GMvCd9nH2iD9nPixwRuxhIjnAVHSIgh6Wl8eyyXJwnrrUGLOLqSjgnfOad89rDreGtg6R1wLVJKQ9pmuyJgfxLCaZI5UFYt9ytgrnqhYdCpDjoCxMBXNNze5Gj2qvh2dbiExL5lKX4wOhtQWwnnO7F+kQkKn1TdWVVhchnc58x8pO8C77nl+xS//1Kx9Fss2AvQGEveyU5GY2zFAgpUgqAgwKLRQWgScSPBPh2wjPJgzZnP4298Gv3bAeAZng/1qi3zPUEmBw+idhFLKf8uwzYBuqRl1xRGYdYYYWEhifcU3eNuulD64YWI303zvg5f6mRep6rNJDihjP9lCZHs+3MZ6JhmCaGNeW6ZXdju1AsO8P2T/r+qW6383PwK4rSLD9ogShEV4D1DJCjRcBWBOAzYEJ3APEWCoUjC1SV1NcKU1zpVxEK4ERYgDW2kqzJle5c/kcJxpLBLTHz81Mt2ZtgCaHkHGmYXTRkzmkzhGkXsY4r2TX0khRjlWsyWmeKE+yt7fGgRFPtSdKVZ4tHaBm9lFMPSbbMNkGT28P1DQBMtkB2hlQL+Wa/OmeF/jYdJH3XDjJey/cjMoqPrtHnmb6pouoL/0pzVQ4oDZ3Hx3h0sJ9oLZDfprFokfTejxq/3cu2ncw1+vxo2cf5a617FrwBN67bsJ74GZE/voXEsRa8xvPPccvPvMMkdYoIfjeI0f44WPHKL7CtOc/+/yv8on5p3jvnlP8u7u+9zpv8eZ4vYzfLyduALTXWIynNr86F8ZXO6y1PLqY8KuPt/jC/PCGvc9+npr8Ii+EU0RmH1PRYWrxXhTuBmPR1P2LrPprdGyFQjrNPYuG++c1p1b1UFcme0T+Gnm6yDGxvwfJLCaZJaVC4sPlMpypWnp5AWoIyrCWfAK76yk7mj3KcQcl2oPU5WbNlOf6KFrhNE+yDXLNATPR3pTmJJ3CmrIbdDMw9tKDt6sm7HtqiX47JZFcteBg3KpiQ0oSNTDrHQIbH8RGg9U+E9cHYkNRPq8EdGwAhrbfksiEDjjgIcT2YMpaRlKVfSA23qDcSLBCoKXA9lN21mL61mjZPvX95qSNENKBKiFcGlgQZVWrEUK4vpdDk92t7EG2OxZbgNXR4o1NRrij39voofbyjrfVFWw66VLPQiO8uvPHG3uokC4lnf0GiHFjYmt8emKSlXCS89VJmqHESDkAa4k0rIgGJ1fOcltjgVC0xrezryk0AZYQIZMBULdAVxYJEt+xTnI9KywY9ny1FqzNcSGcoeFJjrXXXEEJsOwHPFzdi5WHKJuSayXVdK3RHKu2GaglhFi9Ez+ZAiSpMHxu9iKfmPZ5w/xt3LN4AAAtI8yd55iafh77xT+laT0enH4bD869g3bWv3fOnOW+6H3Mqk8zH8Lz4gEet/8QTY6Tjcv8qxe+RK2XSTFKAf63HkPdfeBVKSS43G7znx97jE9cvgzATD7PP73jDu7fvftlpz2fWb/E3/rEf0Ei+N37/xn7Sq9u26nXw/j9cuMGQHuNxU89+SHe9/xfvi5Tm9ZaPn0p5lcfq/PUqrtZCKvZz2eQ/vOcUTOUk8NMxYfJ69rge7FcZym4SF1ZRLqDk2s+776iuXfJkB+MkZp2uEyeHkpuFPtPYZJZtJ0k8STLBcsLE5ZOQaC9ISgT1lKOYO96xGyrRz7tZKnLDJRtGJCNcR5QwloH2GQ9Y8rqm+a1uuKapNvQgR+ZNSJ0/wVEBpD6jAi4wTjFithVlW7TpHy4r1tZVSgMPiarenT7qh2IFODAgVt/f53jYvs+KLt2V/uh3ktkthIbtqnfWsl6w1RnP8bsMDL2oZ8GHaRD+zFSHCDMCGA1GYjSWNIRMDWi1xrVbWFfMbP19RA2q2Z1/T5dgYZFITB4NDfPr4uOrbWeA5xeY6xFGeAKV4yzL3GAfbzQQJsyDW+KK8Up5it5EiWHujVhWRdNbl8+z62tKwSiOa45zHRr1vpYfOTI/zSSniyRjz0kMahVUO1Ndh2pLXMhrDCVtqlo979ECB6pzLEWHKJkZilHgukWFKIhUPP903gjQC0WOXp2D+Velf55eLHQ5LNTlkNrt3C07lo9xUGT8L51Knwe89AnaIpgE1DbwUXe1v0lZrxP81ywj8/xL2iyH6zmR658kG+/5OGlDuSIuRL+d9yGvH3Hq1JI8KkrV/iPjz7Kpba7F75pdpZ/fvIk+8vll7WcH/3cL/PJhWf4tr138m/u/OvXfTtH4/Uwfr/cuAHQXkPxek1tpsbysXMRv/zoKudbjg1TNmaP+DR1f5k2u5mKHVsms5ZChpS6f54Vv07P1jjUnOT+ec275jUzg7HE0AnW8EUbX7THnrbRNWw8R2qmST2P9ZzlxQlLoyBIfDHkKoxlsmvZt95jqt0jNC1XzSk7mZnpxtRlzlUVYpywP0td9o0zB/P22yXZPCARsg8GAFKsTbPquz5ogCFY2P5YbmdV4QZnf9h8ewz49IFLmr32mbghENrMlr3U+36VZv9I2g1Mmt08iY1/u3bQ97WOLVmvUdPcwZQdl4EOrq+B8+gb7Y42S8fKAcDqAysGYGv0VWKFa9hurcSK7O9CYUXGRWWvg88IrIyRaoWQBULm8e3q5opgk8fqMu48zXqpjgEy5cx+++nQ0a4FODDXY5KVcIoLlSr1vMJIlwpFQE+3OLp2gVval/FEc3Ov1D6Dip+dh27dsfBJKFKIBUK2XBWo6I3rR01AR1RoKclsOrwGz+bLnC0cIBD7ycf+oKBAWlB6M1DryTzr8iC1Tp4wM5iOpOaJqmaqfYjprvNNjEtrlL85JVz6E+yjn6Mpczw483YH1DKmf5e3zD3t/05Ffp4/D/4BZ/kmAHbrR/nXZz7MwZU3II3zXJM3TeN/123IfRPbn3yvMHpa877Tp/nV06eJjcETgr918838wC23kPO8l14A8OTaBf7OX/4MSkh+7/5/xp7i1HXfzn681sfvVxI3ANprJF6Pqc1IW/74+Q7ve2yNpay5uG871OSXWfNaFPVBpqJD5Ex1+B25wlJ4iboUTHR2cv+C4v4rmiNjurIGRjXIb/ADs7qIjefQepZEhbRDy9karBahFwiEcDdoaS07mpo99R61bhePhtPnyO6WqUunXQIh4hFxf2OzAFtXsaYIwttgKquxNsnSmH1ANgpQxi/R4RU7OpK+FJKxG16H718rIAhGgdDgL9n2b7cT2++cRjntHH0TVx8tQtdNQYZZFawrFpAGfA2+TfBNRGhiQpOyddrRFSYkhKTkMIQYQqzJIa1EWZGdZ46V7bv8C2vd31754XlFYYCuL0mVh1EGvBV8sUjIAoFd3tz+ywRZOpTsIUXT32qXWs6NsGveBnZNYnSVhj/JleIkV8o5Il8OwJpMWhxavcSR7mWUaGzWVFqBs1dRCDFkTLsyjzA5cqkeKSwYt+vAFGioPAUb4WW71FIeT5f2knqH8XWZ6RZU26AyoBb4z+CFDw+AWlcWmA9uItcL2dEbHpf50BLEuwjSOUARz60w+c2gnn0Q89TDNFWeB2fv48HZ+wZAbU/Y4G3Rr3BFt/mk94/Q5AlY5z3RT/F9LxSYqr8Zkc2r3pgVEkxe/4zJhVaLn3zkET67sADAzkKBHz1xgrfv3HlN7N0//uwv8ZnF03z7vjfwf576nuu+ff14LY/frzRuALTXSLyeUptr9RV++5GL/MHFCk1bAiCwDTz1NKkUTMUHqSZ7kFlnPkNCPTjPilfHppPcu1jj3fOaO1fMoHdfKrtEwQoF20WOif1DiGdJ9SypLNENLBcqsFyCVm4IypQ27Kun7Gx0qURtlGxl3mSdDd5kOB2OlU4joxqD1KUQG8CbyYGuOOZK9N3h+4AsHqbWRtJpw8Hwa3dZjt8RtgKBI03FrQSxBVOUfe5nRx2Gsm7hYxYaWapSuKIFd6yvNihs/T+NRyRDuiqkrULWfY/F0HApF7MSWBqehxU5PFsiZ8qUdJWpuEQtDQcAydcpxbRLMelQTDrk0g7FtEtBx1uuEyARPj0vT08VRl4LpPLahNcGSCQkInuVkAjrjEwEaGEGn92ryF4tOss+CyzSuAcLYUFlQM+l7Sy+hRAzhIpWE2DIxZa9qz6zvc3HNJaCxFOkymL9dZRcImSe0C5tskBxDyn91HzCKGB1/8tlDFvARhsPqwv0mGAlN8mFcoX1okJLx7gWey32rc9zoHcJuaGS030ZXCpUIYRLmbvihBJh4uPbrkuBbrqGPazJE0lFzurB7/BccYZGcBjLDibbgomWdf5zRhN4z2SMmksJdmWRF4u3opOAo/UeQVZ0EQvQdgqr5zDkMTevM/nOGPvF38a88LQDanPv5MHZt9O2jqXaV4i4036UT3RvYk0cBuAm8X7e0/wD3nHm7dRad7gN9yTeOw/jvefodS8ksNbyicuX+U+PPcZ8xxWL3L1jB//8xAl2l0pX/e5jq+f4wU/+HEpIHrz/n7O7+Or0An0tj9+vNG4AtNdAjKY2/+Obv5+373jtpDaT9jLtxadpLz3N/Px5Prh2gE/J+4mEu+h91rHqPCVTYCo+SGiGGohYrbAYXKQhJCeWd/LAvODeRUNhQIoltMJlCnRRo2J/q1z/y2SORFaJfLhShoUSNAoOLUgLuURzYC1mrtWjkDaGejI53hbJaaZ8lxoU3aGWTLQ2z6crWHIOwA2E1BqIsQND16GwWwzSelvHQDfGhtk2aaLEyDwbWZ2Nr/332TI2PSVvBYK2SGWOoq9B5qk/3ytPT8ZCUPc96p6irTx60iOVAZac6w1qC+R0kXxaQpBHiwArtk7JWOxAqG6y1J6wKTndJTQd8mmHnO6S0x0CcxUgJn16qkC3D8JUnp5XQEufrtR0lc5ejXuVlkhBJCCWGeARkkRKUtGfPBCQOdShLGOv4qpA9VojRdJGiiaSFkq0ULSQtPBEgx3BIrPFnbTqxwguTbNvMc/hphgwTP0wQOIpYk9gvXWEt5wxbIvOGmb0mGfXiwPc0D8XnYYyzPzvcoAaO9WsVRhdo+lNcqk4yUIlpBs4FDrZabC3vsTO6BJStRCiN34NjBaVZJW7GklHlinEFiWb2TU7bteBzWFskOnc3D+WggKX8weI5UHKvYCppqvS3g6oPVU5QUMEHF1fY2d32P8ytUVSO0tMBe9NKZVTS5hP/Rb2whkH1Hbez4PT9w6A2v6ypZBe5OnuLhAwyVO8Qf7/OLGquPvMuyn1DroFlwL8996CuvfgdS8k6KYpv/TMM/z6s8+SWksgJX/n6FH+9tGjhEpt+73/7TP/k88vPcd37X8T/+rkd1/XberHa3X8/kriBkD7Oo9elto811riW/ac4t9+naY2rbUk7SU6S884QLb4NJ2lp0nay6zIWf4s/z18yf8m0qwEXbJGINeYTKtUk92ITA9liFkLzrHqN9nRnOaByyXuH9OV6UxX1sIXnfEURjqJSeaImSLxBItFmK/AetFV7EkL1W7K/vWI6XaXnK27FjCyu6nK0VUNSoQ1IyxZfZM+xmbO9050HeBu8imDxt+8dMpyuE4YVi3KrEoRtkqh9a9aMdB3bWPMmi1zaLcwBIV2DCBu1IMx8vmVp0G3ZuP6P5rAIjFCooUiRRELj1gqYuURSY9EeGjZt/DwEPhIfJQN8EyAwHe6LKEwVmU6LLe/yhpypkOQgbFAdwl1B99uD8Qi6dPycqwFPgs5jwsFwbm8ZC2ArrL0lKArBV2h6EqPWLiqQwiygodXcIwy+xH3GoOIsfRQwlWMejbGI8EnxSNxzetR+DY7DjaHZ/Iom8ezeZQpoGz+5W2PWCaUTzCjnmWyWKId30x4eY49iyWOrUtqyeZzNpWS2BNov4lQS1ladBG5kUnO9I7uXBv2GHWtufJZOjTYkAoFTInITrCcm+RSqcxqWWKxzHUa7F1fZDpZQKhmBtY2GhtLMrgLSGIRENsSxTRCeOuZjm7UrsNVqRohBo3kIyE5W9hD1z+Cl1QHBQXbAbXHaqc4FxTZ3zzPXasFVMaqWeuR2Cl6skb+gSKFA8+hP/Z+7MJlB9R2P8CDk/fQzop/ZguC9V5MbCS+aHKn/E/stJ/j9sWbeNO5d5NLskKCmSL+d96GvOPaUpEvJ842GvzfjzzCF5eWANhTLPLPTp7k7h1b9958ZOUsP/ypn8cTig+8+8fYUahd1+2B1+b4/ZXGDYD2dR5fj6lNay1xa4HO4tNDQLb0DGlnZWy+y3IfHyn8dR7z3onNwIZinYqNmEpmCWxxMG+kFlkMLiGTgHdenuOBebipOa4rs2qdnOiMa7vSCiaZIzEzJL7Pat5ypQKrRYH2QGrLbDth33pErdsiEI1t2iqRsWSMsWSbxP3WA1PEWg9BDjfg9AFZ33V/I0O21TGE0XZHDpD1U6D9XosjrvCmgLEVtJkiMrMkskoqFMgYKdoo2vh08G0Tj5arcNvS5sHFK7mfW0vWaNvHoFzPQ5u1SrIOKA5F6ALnaWbIWpq//BXCCJbdig3cjiHcjk0cAkMtXJsrLQJSEZCKkETmMCLACIXBwwqnUWspxZqvWPEVy4FiMVAsBpKVQLDqQzSCgywaRA9L5ECXcMypA2AJiAgrXPslKxKEtTjLCv8rAHgJ/QcC2z8XrdNueUbiWw+Fh2d8POvjGwfqAlOkks5QTmcGcoLhMiOUOk1JPEW5YOlyCH9xjr0LNY7VJQdaho3cjQFiT5H6LYS3giedjk2KcbPavo7QgQoH2FyXiSwVakI2Fxr4WF2joSa5XKqxUAmJPc2Odp3960tU0mUH1mQEG42PrWAI1hQ9UQAbEpomQq2z0a5j4CcnhufMpXCSenCYxO5iqi2p9EBqTeA9jR8+PABqPVnk0dopHi1PMtl9mrcvBMxEw3t2aiv0/BrF79hBUPkS+s9/H7u65IDa3m/iwYm30jZu30MFkXbX8CH5AY6LX8S3mjdePMWJS/fha5eFkIenXCHBgeubWrTW8tGLF/mpxx5jKWtT9Y5du/jREyfYUdg8Dv3Ip/8HX1x+ge858Bb+xYnvvK7bAq/N8fsrjRsA7es4vh5Sm9Za4ub8gBFrZ6As7a5tnllI8pMHOV++hw907+Kp+Gi2ECjSomYElXRqhC2LWA3O0pYt3rAwxwNX8ty1alDWfUnLDlGwRoH2BrF/wbn6mzkSL0cjdKBsuSSIfVDasrcesavRpRo1hnqyTW2VZKYlS0cqLhtbALdCdtMOAR+XshwFZKMasu2OY5aq7FtMDLQ4ffPYfrPr7UHVaJi+VYIVyH7F38tMiY0XGziwaFHE+NT9kPkwz1pQpOWViFSVMA3Y3+myq9NgIm6Pra2rijT9CVr+BFoGW6zMoIhHOhp0nXGr7WbdDiKUjZHESBsjSa+5R+bmdY3u10uAuC3Tv9cWBoURCo0ilYJUWbRnsYHGBCk6iKj7MQsS5q1iSXj0JPSUpatAK005aFP11qn4a0QiZUV41IVPg5CezdG1ATE5YhuS4ianIPOztO7L3+7R6lzQCAzlNKSSFqmmU1STOQK7xYOgvEggnyAI23SCnXjLO9i9NMWt65JjdU1xi1M3UYLE74JawVNL+GIBJTYY4loysDYC2EyWCt2y0ECALhP32bVykVZes6O9zr7GEkWz7jpwyAh3nY7tPA6sOaa1RwlPC/x+145R/Wo/JWvlADC2Vch87iAtdZBaO0e1Y/GMIVAbgJoo8ujEKb4wMYfWj3D3UspdKzMDds5Ynyg3Qf67duN5X0D/+R9As+6A2oFv4cHKm2kbObLRhml1nlP8G4piniAJuOf83RydfwvKZoUEd+3B+/ZbkVPDB9/rEe0k4Reefprffv55tLXklOIHjx3jb950E74cwvQvL7/I3//0f8eXig+8+8eZy1evstSXH6+18ft6xA2A9nUaX4vUprWWuHGZdh+I9cFYr755ZqHITx2mOHMLhdljFGaO8fn1kF99ssOLvd0AeBZqpkdNFwhsbrhv6gqL/hUO1os8cGmKty3a4c1dRHTCVXK2jRqpmLQmwCYzpHqOWJbohDBfhqWSoBNCmBgOrPfY0exQ1OvuRqm6m1OS1jE/iPYgdbnJ48n6mUYmc5gHhinLPiBzg9xWgGwzO6aGqc0BqNu+ldIgvSqy5SAYWGFs0+Zos9mslwGuvqt+mAFM7dgb2WO0J+NwQYKh9UOAA6QZI2alA9dZgUBPFlgLp1nNTdP1whH9lSGRmhSDFhaLwbOSvJYUtCSvFQUtCbXCy7zXRmGSNEmWkmwRmiaBaRLYDsomjPXcHHiW9S1BXlnbIzf8KYyQGKRzw0dky2QgvPcAb+x2eX3TSqORCuhJ6Cro9adtPkcSekq6/0lJTwl6UtJVgp4UxErSVTL7n6Qn2ZJC7R9DrCZnPapJnoquUE1mKOqpTZo4KzoI+STCW6YZVqG1gz3L0wPAtqe7eWgxQpD4PYy3gpLL+HLR6cO2jD675g97t25VaGBCbFqjmbFrjZxmIl5nX2uJ0DazdGacpY+30q05z7VIlAl0hPTWQGxk2PutwZx1jEGwkNvJmn+YsDfFRBsCrQnUM1sAtTt5aGIX58Iv8oblBt966QAF3S+igLRQJfzmHUjvIfRf/DF02w6oHf52HizdRVsPgVogNW/L/zLl6HcAKPfKvP3MO9i/cgKBwCqB/84jeO+5GVHY4kHpK4jn63V+4pFHeGR5GYAD5TI/dvIkb5gdtnn6+5/6b3x55Qx//eBb+fE7vuO6rv+1NH5fr7gB0L5Oo5/anM5Sm5XrnNq01hLVL2as2DN0sjSljhqb5hXSIz91mMLMMYqzt1CYOUZh+iakF5JqzQcefZxfOy1Z1jvBQskIJoymZIqDm7oWPVaDM5S6Me+4MsP9V3xmB7gopRusE4gG3pjYX2KTGXQ6Sywn6AWwWIKFkqCZh0ov5cBaj5l2ixzriC3bKgFWuRu0bI30txw9FiJ7Uu+DGLdNiBjGRP1bpwb7Gpu+iawd6G0yIDYAY5svtX5TcbfYDGCNDIQReQxFVFZNJshMVum5np4ZaNx62b7Tx5kS2lZJRI2eKtLxivS8PIkUBHadSnqZcjpPYMdZMUaBpvVxgK3P2gznbHqSC3mPC3mPi3mfC/mAC7mQS/kcKR5l7TMbh0wnPrOxx3SimEwEeZNSirtU4g6lxFVPFtIOvt3ggzUSsQiJVJ6uytNTeWJZwIiCK8iwFkkyZOkyxk7akZZKNh55H6FItl3X1cIgiaVPLD0SoUiFIhUuLSqsQhqFZ90ETuguhUXaFIlGWO1YQqsdg4tGWY38KlXvGl+hA8VqJeR0AR7yUp4q+pwrODawH33Q5hko61zGsk1QSefw7DgAsBi0OodVl2j6AZ10ml3LM9zaUBxf19zc0AQbds8CiRdj/FWk6gO2LR4IAecRJzLdWjahtmDXqiRmgqVwgnpBUtDr7Oos4dMB0XYPZCLeVrdmbIC2BTxaCNVgk11Hv4drBiBbqsRieIRU72Wy5ZFL001ALRJFHq3dyUOTe3i89EUONxb4vhePsSMaHhAThHj3zCByj2A+/ycQRzRVnt+/+bv4nfwpurq/n5bjky3eaP9P1ptPATDbnOO+F9/NbPOQW1YI/rfcgn/fUYR3/QoJrLV8+Px5fvrxx1mL3A38gT17+Cd33MFMPs8Xl57nRz7zCwTS40Pf9C+pBdePzXstjd/XK24AtK/DeGz1HD/0yZ/HXqfUprWGaP0C7aWn6Sw+M3jVcWvTvEL65KePUJw5RmH2GMWZW8hPH0Gq8Ztxt9fhv3/uIf7w0hw9O4lvBTUtqRmJb4cl4B11mZgF3rhQ4YHLFW4ePCwbYr+BkPXMRLa/rUA6iU7niMQUkS9ZKcJiSbCet0x3EvatdZiO6niimTUf3yxKFtZm7ZSamQXGRibNHwIyqxgAMtF38L8aOyYYOvp7GVbZCMY2p+dGKzIFfTPSIdhJCNGUkGmIMgJhJUinW9pkMQBDtis7nv1+nFbGuBZEG9evwJTAVFznAlMGPOq+5Upo0CphJmkxnTRRspPty+gCACSJ8OhI13Kpovsp1s1hgK7K0fPypMLHIFHW4mtNMe0RmO3TuVdCn4UwZD1wgMyIAnnrbDHkJvrQvcQyZc3vUve7tLyInoxJhCvMKKYBRR1QSH33PvUpaJ9Qy/HU6wh4k5vAXAb4uLY09MZI8UilTyICtAgw5LDknfdaf8LHZAURIBAYtIhpez06qkdXRcQyIpExqUgwJEg0OWPJa0tOW3LGktOMvM9eryFjbKRgrZbj2YLl0RCeKfq8UFS0/OFvbLFgNUUdUtEFqmmZSjJFwdQ2LU+LOpG6QMdLWRMTTNWnuaUuuX1dc9u63rL4QMsY7a8hvGU8uYSUa9swo5mprymAKbKxXyiA1XmsrtGWE6yFPoGoMx2toEQXRHbvEFvoNTPdmrEh1vpI2UDI9gZWrd/v1bHMGsVKsIe6uIlKp0whTgnVM1kLKZfWjUSJR2un+PLEPh6ufolS7wL/8PQJDreH9wwrBOr2GqLwDPqpP0GY1DFqx/46v+XdRmLdPvoSvvvABfLL/5b1znmwcHD1MPeeeYBKbwaApBSjvu1mCvecvK6FBM045ueffJIHX3wRAxQ8j7937Bh/7fBhfu6Zj/DOnce5fXLfdVsfvHbG7+sZNwDa11l8palNaw29tXNDZmzJTTpub5pXqIDC1E0UZm+hOOsAWX7yMFJt77FzfuUSP/HZp3h0/QjWligbRU1LSiOgLBVdmuoMR9fgXZcneeOKGurKVIvUq2e9+EZudmkZk8wRMUPs+awVYLEsWMsbdrUidtc71OI1ZxipuuOaNEtmgRGBaLpqS7lR5yI3ADLNsHH39pYQdhOLhGPUBiL+rVOVwybjItPcjevENAHaFhHaQw1cOke6B2y5MSrTwmWeT0IPoMq6p/jd3SV+Z3eeWFmKacyxdos76i1ONVrc1GmTM1uARpMHU8KaAsKWMgYxs0TAYkWH2GvhyRYeWwO2nszRljVSUcK3kNc9Qh1dnQ2yYBF0lWQlFFwsCJ4tSx6uSp4tSXoqE3UP+oE6YOsZwUwcMBcF7OiFzEUBc1HITBzg2a1/xFQYFoOIhVyP+bDDfNhmId9gMagjRERea2rGY5qQGVFgVpSYtlXy3Ro08+i2IkwFoYGchryOyeskA2/xNQG7V1Ik4birPngLMgAXZia6weB/kVTUgx4rYY+VsMNa2GEl6LISRKwEMWu+IRU5dFb5mteCnLaUU8vBTsrhVsqRtuZIO6Wcbr2d9aLPc0V4Mi95rujzfEmxEMoBILJYAiOppAUqaZFKWqOSTg06f/TDkNJT87RVh3VZxOtNclNDcGpVc2Jds7OzufjAkqCDdfCWUWoBKde3Z6Nt4MCaKbqq3zGmXEFaJTVVmkEOIdpU9WpWBdobgrUtdGsWz+niAKmaWWFBf7mMsGrumu/IKiv+TajeHso9vRmoUeKx2im+PLGfR6uPYNKL/OOn7uTmdurAYxZiLoeonsNc/lMECU2vwM8c/yE+yj76GzmTF3zn3mfoXvp3tKIlhBXcduUkbzr/DnKpKyTo1Naw37STybvffdX7+8uNZ9bW+A+PPMKTq6sAHKlU+OenTnFq+vr35XwtjN/XO24AtK+zeDmpTWs0vfVzA71Ye/FpOsvPYpLOpnmFCilM3zQAYsWZY+QmD17Txaqt4Y+e+Ty/8mSHhd5RQpNjwnhU+xoi3A26Iy8x11nnnisV3r6Qz3RlFkSPKKgTiMaYZ5LVOWw6R2JmibwC9bxlqSSoB5pdrR67Wg2Kup+63NhWyT2zDlgyWd/CQDNjyYxyQGygX3opMX8/XekghuuL2QdjW+i26Kcq+2BslB0DYz0MeYTxECb7skw3t7QZW+DI07n1MCZPIgoI2cOnPhjwW6rIM5WDPDmxgys5y6qvqUtDQxka0hJnBrnSCvb36tzWWuDutcsc6yxSMpvPE41HmyqprVBISgRpiYEPGzHIRqbda29mCQc2If7QSR4Pg6XtGxJp8CyUUrbh3FwshpYLBcv5guVSwXKlBBeLmsXQEtkYbRy7IbJjI/CRxmc6LrCjV2KuV2BHlGdHlGM2CgYmopv31bISxCyEMfNhxGIYM5+LWAh7xLKDFR080aNoY6biGqV4J5h9IDykhVDDZHqOOfMwEzzpDD90GaUrKFPB0xUCO0mQThIkBcJU4ScWb4yxG0nDjnz+SlKvfSDXB3aJCIhUSsfv0grr1MN11sM1lvJ1zud8Vr0aK3KSZTnNVBxwpJ1yuOUA25FWys5oa+qt6wteLEmeLng8X/R4vqTGU6QWyqlLi1Z0mWoyRbhF8UEk67Rkk7oM6Jkae5qWt65oTq4Z9rU1gdk4RKVobx38JZR3BbGha0c/bF97aYpYU8yqpEf+r4uQVolkiFY98tYBdveQlNmdiISNTd2djUuAEEnGqo0+LMrhdYtE41NXu+jqWyj3AnJyHKjFlHiseicPTx7gscpjyGiJf3D6To60EzyxOlx3IBGTS9j6JxBqjXO5HfyrW36EeVugf585UJG8c/ZRehf+LV3dwNc+bzx/N7dfeQuecRmQ1YnnSe4rM/fm7yBf3rnl7/pyw1jLH549y3994gkasctmfMu+ffwfJ05QDq6fDu61MH5f77gB0L6OYjS1+Z/e/Hd4245jg/9Zk9JdPTOwtXDM2GlM2tu0HOnlKMwcpTBzy0Azlp88iJDX1l+tH8+vL/Mrj36av7wyhU4OUzUhNe1RHDTrhlh0yCXneeOix7uuVJjru5KLmMir48sGakSEb403qMCMVJl2DpYK0A5Sdra67OisEdLIUpcbBilrQPQyLVnDNQgf/feAJcsYqZdgx9x3+tWVWWPuPpAbgLGtbvwOxI0zY33PI4mxuUyY71go1zFgO0Qox4CYtR7oUjao5F36xhpEcAX8heFTe1ohSQ8QM02qJInnKuaaoTueqzlBPYCFnGXJs0x129y+vsqbVteZSvrAMKHtd7hSiFCiyZ6oQWA3gFwEsShjbBGpc3hpMMKKpCC7ILoZe7lZYGRRaBHSzJVZnChyZSKhrhaIupcgtZTjAhNRhalugblejkqyPXSLpOVingy8aS4UUs4XUi4UE2xOcFO1xu2TMxytTXK4VKbiCVa7XZYurbN2doV4EUSzQD6apRxPE5hw23Wt+gnzYcRCGLMQRizk3GskoZKWqaZlSnqosQToyAYd/zKROoOSq86rj5FJtPBtm6I2FLUkn4aEukKQlgl0hTCtkNOTFPQs+bhGPimSSzzCVOBrg2fHgZ3ckJZ9JVWvGo9YVohFhUhW6HghTS+k7vl0PWgrSSISimmTStqklrSZjjtMRz22upukAs4XJc8WPZ4veTxfVDxfUrQ9VwwSmoBqWqCSlqikVUq6NqjqHm5TQlM1aEpJgxITXXjbsubOVc3+tqaQmA1JboNRqxBcRnoLGWgaPxdtv3rT5Fyaf2CRk/3feKCrGBuiZYovmiAjxKAwKMKKeAuwllWCizibf8Suo/+wgoe1gljUaHEIr7eTvDydadSGQO2Jyp08PHWQx0pPUu00+f5nT7EnivDFElKMFDKVmpB8CeOd45d3P8BvzryTUanEwarkbROfo3fx3xPToxiVuefsfRxZOumS5kIzP/UQnVMpO09+J1N734qQr8ziZTTqUcTPPPEEf3D2LHuKRX7zgQcIrmJu+3Lj6338fjXiBkD7OomeTvibH/8pzreX+ZY9J/kX++4c04x1l5/FpNGm70k/T2H66Agzdgu5iQOv+IJbi7p86OxT/O6zzzPfPkw+3s+E8alpbyBltxgwl7l1tc19V8rc0uizcCmp10CoBt5IitGJ/afQeo6enKAbCpYLThw812oxHa+iRGsLbzLrbpCiz5I1NxcA4GfiXgeGri6zECM3TjdgIIeNwrfWjcE4GBs2ALdWYAkcQ5cdmW37Qva9mKxPvzm21TmnAzN5rA4AiZaGrh+ReF2QXQK6lM0w5RGZSVT3ADKtbb2eLFJp0X4Xqdbx5DqKoU6vJxXPVco8V6mwHBbZGRt2dmPKcZuJZIlyukRoXCXsViyftR4dUWA+yHElF9KUHqU0ZV83ZS4yBJnx6iZwa0f8rnQFbJk0EDRyq1wOVnixqLmYEyRCERqPSqrY2/XZ21bs7kqCbVKYAKuB5UIeLhY08/k2S4U1VgtLtHJXCOUKBRzwHyzBQi6dotw7QKl3gHJ0gHJvP+XeAUI9se166l6XhVyb+bDLUmBoeQViUUSKwuDnsFhaqk3da9LwmpgtzisAaVOKKqbiSyYLRaaKJSZCn2roUQ09aoE3eF8NFBU8/ERguqA7kHYMjbWE8/NNVpZ7JI2EUmSppIaiNuR1SmASfDuusZODtOz2qVeDIhZlIlkhlmViWSWSZWJRAqHAGkLTJGfqhKZOTrtXtTENnkVbhaz6RZbCPPNhjov5HEuhIFYufajwnDebrWCFTyIg7XcQA9qyTVNaWqKAHxvuXdK8YVVzoGUoJSlybDcMqGVseAHpLTut2ZYSBFcdak0eQZ7hQxaDByRLipS9DHz1K7DjDKxtZOyze5CMN5jgjlz7GfvWZQ4dHyCUV/CDIVBLMqD2yMRhniw9w556wve8cJzJNMETy3hybXgOqwTk0zxTafN/Hvlu1rwK40BN8Nbix4kWfgItUqbas9z3wrvZ2XDtpBLV5eLMJ1nff5ldx7+Dnbd8B2HhK292/sTqKqkxnLzOac6v5/H71YobAO1rHEYndFdf4Kee+hMeXJ+nZjX/+srnKKSb00/SL1KcOeqAWMaM5Wr7vuKnn1hrPjV/ng+++DifW4iQ8c1MJHuZ0B6FEbbM2BYHG1d463zAG1bymebHYGQL4zfwRHP8CTKtodM5emKaKFCs5y1a9pjp1qkmayOpy5GNsaljZFTGkomNDv99mwf3pe2Fr/0y9uyGZRUDa4arWlzIjBXppyn7pf4uZSoyZZXYaH46WABsAmLGz274IbHM7BA8g1URge1RNF3yZvuUlgVezBf44x0BX5jsUfc9dnan2d2eZFe7yM6Oz2xXsKMDs70uoVoHb33MPsR1Wig7SwIBVvVAdZGiuy3zkgqYDw3NsAeyQzVtMhd38DYM6rEQnC7leaJc5MlykSfLBeq+4Xi9yXsXu9y1njId281pTSsy+4K8A2ymTF9wDS4FuZyLWMo3Wc2tov1VlGygrCBIS1SjCrPdMhPx9mmUVFgu53Hp0rxmKddmPbdGJ1wg9NaYVhGTXo+ybULcxPYaBGmVMNlPEO/H10cIxXFkvAfT274iret1WQo6NFRIyyuxHsC6D02lafrz1P1Fun4HCNEmxPDKdECBFFRGwFstHL6WfUUn7XK+vcrp+iIvNJawWQVmUQfM2AJvzO/luJpln62gGqAv1vHqLcK4RWgbBKaJbxvbnhNONxjQ8nzaqkhH1ojlFCmT5HRIwURjgC1n6q4n5hah8empKpGs0JNVogwEjtpoJMKSSjHeq1RCJA1tZWhJhTaGvW3DwaZmZ0dTSDTemN5Sg38JgosItbapqAhGdGQ2n01ZKyrIrt881hqESrKCHcMoWNt0P+n3nN3Aulk7ZNWwCm3LxHoXSrTw/aeGQM2WeKpyJ49M3MTZ3BUOrLX51vM3kTPWAbVgCZUO7xmJd4Xf3r2D9+2+GSMkSkh0ttoDFXhT8Iekqz+LkYa9a4d4+4sPUOs6e4yev8a5HR9jtfYcM4fexZ7j30Nt553XvTvBVxpfj+P3qx03ANpXMYyO6a68MNSMLT1Nd/l5nvcK/OTcG7FC8L8uPsztvWVUUKIwe0uWpnSasbC2d5OO4pWGtZYn1pb40Pnn+JNzz9FJahSj40zGM1TNkC3DambbV7hrOeaehSKlNHO7lx0Sr4EvGxtMZEuYZJbIzhL5Ac28BtthKlqjYOtZ6nL0KdsCvaGWbKSi020nOMar7zy+BSiCwd+Hon5GdGfbWVxsFPCrkWV4w8f3rYxgN6Qw+lWd2oYkwiNSgkhZjEjJ2YhK2ruq7sptT78IwM+mYKjnGkkopQIWc3C2aHm2omn7HW5pN7m97jPX6++ncc5pwnNw025+4h89Di7149iERORpenkWcwEXSynnSylniykvlLrUvR5Huw1uba1zvFnneGudWroZXF4KQ54sF3iiXOCpSpHzuZCjrYh3LnV401qHnVGyJWDTeCSEqLSGp6tj+70xjEiI/RVSteJ0cSQkwsOIPEoXKCVFfLv9w0vDs1wouJTppSJ0JnLoKR+Zb1LpnaW8/CiTnfNM6joKizUF/Nxd5Er3obzbMNFOeiuSaM2yXQ1ALKDuw5oPa0HCpcLzvFj+LGeLn8EIH0mBss5T1B55ExJkLZuwBVJZI5ZVOqJIy+ZIXmGnAWk1VqQYDHbAAmkqaYOdZpUDXpvjOcXN6gjl3lGilRp2sUfQapFL2wS2QWAaBLaB3IYhs0DTT7hUaHOhILmYq3ApmGHJnyCvFQc7Kfs7Mbt7ETt7Pabi3pZFJAZBJMsZWKtmAK6KEdcIaK1r6eanhkKkySUpYZoSpMOCGmQb/IsI/zKoxvbM+QCw5QZ6SnethO72InTGFPdZ+IxZG+tk4Cpekf370Mjy6V/nEmye1FRdLaj/4qCDSWpLPF26k4enbmZVRRxd6nH3wqS7G4l1gsll/HpjcP51VMrv7prhQ3M1orxyvWKzn+xAxXLK/ia2/asIAbcs3MHd5+8nF7sHj2b+Imd3fpRm4SKFiYPsufWvsuPmb8MPh/2Rv5bxtR6/vxZxA6C9SmHSiM7ycyOasafprryANeM3uFhI/r8772bBy/OOMM+/PPRWirPHCKu7rxsYG435TosPXXieD517jvOtBirdxWTvdibTKvkRMXWt1+T2lWXumc+xo5cNkqJH6tXxZGPccduEmL6uTObp5lIkLWrJCr5oOVA2pt2Is6bkrSxtOV61OA6choDMOY7D8O4nsP2G3UDftHS7G+54mnKkJ6Dt51I2V1u6L8tBesKJ9517fCI9Uun8zkKb4NutAdDofo0Br41gDJmJvF1/Spv5ZoHzxxKYzDdL4AaECGS/6tNZg9irpHk1sBwGrPhFEvL4Jk8+KlCMA8qxwtcgr5JGBIiVZTWXsFiIuFyIOVOwNHN1anaFvdEqx1p1DnZbm8BXR0qeLpV4olziyXKR5wsBhzox9y+1ubPeYyZONsNuK+koxeVQcjGURNJjupdjV7fITLeMegnIq/0EXYoRQYxUCYnV6NigIshFYpPx6vA4WeZzDrhdKMDFvKGRa9ELlgnEEjNmlZl0jel0jR1JnTD1UMleSPejzQG02U9qDqDtHrYDmCmWtbDNpfx5LhSfYj5/iSv5SyyF82jproeyTpnWCdNpwpROmYsEM1FIMS2QmhIdWaYpS7RUiaYs0VRFWrJEc/C5RHqtwAawxCAi8qbBlFlhr2hxqye4VR+m1juCXq/AWkrY7ZAzrQFoC0xjLIW+MRp+yvlixLm8z/OFCi8USlzOKWoJg0KEI+2Um9qa4jZVpEuBx+VcyEIux7JfoO3VENQopzlKOiDUHr4F3wwnz1o8I1DGdRfJJ5pcognSlCBN8Yyrk8VbRviXwF/MWOftHmR8Bu2obB7HjmdyiYyZd/e5PlhLMrA2fGgayilGWbX+/SW7F5gcBoP0Lg9Y8NSWOF28k4enjtKzijsWUo6tu3Mr8doUD6wTLC1Dy40vGvjsVIk/3lFG7fJ4MinTyixN9pc0J5L/iUwexLMeJy++hbsu34On3bmyUj3NudmP0gvXkF7I3JFvZs+t30Nl9qvfyWY0bgC013m8Wj+w0TGdpdMD8X578Wl6qy9gt/B5UrnqwH2/OHMLv9hY4bcuPsJMrsJvv/OfXndDWoB2EvPxy2f54/PP86XlK2AEpfgWpqKbqOr8wFcqn6TcurrImxYNRxt9AXWC9upI1XBajCysVU7sr2edViWICKlTMGvOnHHMt8sAnYwla2zh3A9bWVEMW8BAX2M2PFuHTvJb60vEiNfYaKqyX6W5BRgbaEX6QExihcAIiVPlvLT/1cBx3AZghiDMWh8twqz/o8IKmbnzZzo7XJsj1xg7HtFw9XfYbphgG3wxwuaIDdPVvuTCjH0PhB35rh1dxujf+tpEQSotsUzQXgshm/iiSUhry2PXknnWVJEVr0hd5QiNZnfcZjrpkdtoVpsJsrvS50qY47ligWXPI2dSyqmhnEI1EVRin1oSUkq2KwAQgwV2vRaJamGlK3DwrCLU/lVZt45yhQoX867K9ELB0sg1ifwlanaVuWSNXfEau5N1dqYRyu4htQdJzT5a+la66UH8tLytJYgWmpVwgcsZYLuSu8R8/hILuSskyoGggtFMpwm7RMCBYJKbS/s5PnGcHfkZpAoQykcoHysVET51rWhoRV1LGqmgnsJiL+H5epOLrZi1SBDb7ZlKiwYifNpU9Ro7qXPc+tyWHGCyuxfRqCCbglzUJrTNMeDmsbmIqR9NT3O+YDlTyHOmUOBs3qOjJFOR4UjHVZEebWtmelsDpqYnXBFCUXGumGMhrNHwpyiZKiVdQiCRFrwMsCljURpmupYdXcG+lmEi6gM2ja9ThGw6oOZfyfwTh11DNh0X640BNjvwRmQEhDl/QsesaYZdSDZLLYbMfSaPsDksMcJbcUUIgDZlXsjfyUPTNyNSxal52J2pYZphTP6ONhP1JewLw+4Ml3I+j01rVu+Y43c7EwOgtq8QcVvv5/DFn1BMirzp3H3cunAKgcBKy/LOZzlT/iNSz7F55Zlb2XPrX2XuyDeh/Py2v+urFTcA2us8Xq0fuLP8HE/+5t/Y9HcvV8v0YscGLvxBeecAdDy6eo4fzqo2//Ob/y737rjlmtZnTEoat0jiFkncHLwfvCYtol6TJ9oJn+75PJKUiFEoHTLZO8lUvIdc5unlGcvNay3uXK5zcqXvJaWxqoFVTaRsjblo23QKnc4SiRpGdQnEGiF1UKPl5jar6muD6LdaGdmBDEBtBk6MpDFt9nfD0Ml/64rMccZN8ZJgbJCeVPTTpyAy9unqAGbwtJuBMGt9LCHa5tAijxF+1og7s92wwg1wNsInwrMxvs2qw0QyfswGr5mOL3u9ukebYFgksRGIjS6Tqy7r1Q1nteIAepuBm/vGuawaeFi51JJ1VaKyx2YjUXC/beDm1SVcp4OvdAf7x3+0lVS/1+rmFlvj2+/AvEaihXDdRIXAKInyPKSSeEqilMIYSRRDkoAwAmmd25sga6uFA7wI0bdNJlYRbdWl43Voe23aXoeW1yJWMSZrTJ+TgqL0KXk+RQFFawhtijER2nQxOkLrHsZGGGFI812YCoinp1krHua82MWLSZlLXcFiT9DWQ03g5iNlgRhBj5JZZ87UuSMqcFu0m6nuHF6nguoo8kmWJh1Jlfp2s8a2Hx1lOVtQnMvnOFvwWAzckZmMLUfamls6KXvbOvNWHI9YwNmi4oWix8V8kaXcBGvBDIGdHDPQ7v/UQWqZ7Vj2tAWHm5ZqbAYMW6C7KLWI8BfBW8y0aw5guQKmjb+/GqZDTQ6beQoOJRYOlFn6rHe/S0m6BasmhqyaCUAkoFYHxQfGlFkTd3IlvIlQe0y2IcgukbZvWZ/tMc0S1cXljCl00ohGKeGJYwf4TaqsWtcXdjrf5Fj0s+S8jzPVmebus+9m/9oRtx2hYPWmCzzHb2EysO0FJXbc/G3svvWvUpo8tO3veL3jBkB7ncer9QNbk/LYr34n+clDzvQ1c+EPSnObBnwHrtq0e+v8wBd+nYvdBu+a2M3/vvMQadwcB1pxiyRpkUTNwfs0bqG3sNbox5Ka4LHwKE8EN9NQJbBQTHYw172Vks6a9VrLgUbCiZU6b1wyI7qyFkY1kGrcV8imVdduyU4gZAdfrrj+eWPeZDoDY40MkG3lkeVAkh0BFMOUZZai64trsdvoxvps2zg7ZkeWT9Y+aZC2zHpHOhuNq+nYGNGe+FgbYAgx5DDkSUXm+i69rLxeuPurNVgSAhvh2wjfRMgMgA0FxRvZsOz1WvDEANAKZ1RKhZ6dpKEUPc+lUnyTkNOKYuJRTLwRt/0R1m2glRkFG3bjigCIlGU1MFwsRpwvplzJS1bCECMrlJI8M5FgOrZMRTAVWyqJRVmL0hZlLJ6xSA3SGpR2vSyH+5wBeLXqRNve2ghbMb41TVlk2SvTVHlCA9Nxl6ru4m1MQ1mwKHrCp6nyrKoSsfSRfR7Vgsr0SdKCb92A5tJiFmVF9n+xoSLQxaCX6qY+oP3Xq9xGN52bI+fkVwwor09YDFGwTi9YoRuu0AtWiHLr6EmftakdXCrt4wxzXIzzLEQe9SRAX0UTZ0mBiJxtMhc3uatb4WhvlunuJGGvgtdTWZq0SWDr2WsD37a2rSztSTif9zlX8LiY9+hIiW8FU5Hhlm7KwZamsI214OWc5Ewh4HK+xGJuknV/lkRNjj2xCAsTPctMB/a0YW/HEmpLmGqCNCEwS/hqHuEvuhZQg/NhO8AmB4DNmqyV3OC+pp3RdN/Go58K3eC1OGbXYQM330hnFGOK1HkD87mbKcWKcocBcI08qBc0ebvGRLRETg9BcU/lWQ9naASTGKGIhCVRBitWMd4ypWSd/c0WpYxt0/kcq/tCrvA4cXwJK9tY0aYwvYvp/SeozB1EiBY6aaKjJkL6zJ24vv2jbwC013m8Wj/w6nqTn/lwA2sN1mo3YFuNMcP37n/Z/4GGzNGSIcoaZnT7qq7rWw+hZDcXx9b0RECXkHRw0xR4JsSzIX0X9uluyp1LPe5c6jEdZYO27GagrL5B7F9wujJbQ8g2vlpDyNaI9syAaIFw7NkmA9cRlszaIXvlAOtQk2EZgpetUpVbi/hH2De7EZSNpi23HgCtlVgbYgiw5NDk0BRIRcGBMOljkUhrUcYgjMZiUDbF1xFBZlGAiHGtmEZ1YP2df4k05NgG9WccTyEO91OBCbA2JBUBFg8rfLTwMHhZ2tTD9vsSWkvL61H3u3S8CC0SlBHktaCceExEHpW47z61EWzYq4INjaDtSVZygnMleL4seK4S0lZFpuOAuQh29GBnD6ajocWtMBZP43Ru2qWqpbYEKRQSi7IGvFWEt+BSTN4iQm3uftEjx7w/xaWwRCo1O6MO+3ptwo36PwuJUJzPB3xuMuAjMx7nij6Ifg9Fta0GTViYigQ7epIdXdjZhR0dwc6uZGdPMhOpDe2mxlNWiJRUpliR4rHZGX80mh4sBbASwqovaKkCkaphmEAKibAgsUjTw7dtcjqmlHpUkoByGpA3XvZz2Yx7sxnut6RC01UxXZXQkwmxTImlxggHSAMtmIlgV1eQM1fX8yWqQy9YoRe6qRuu0akGLEzN8WxpN+eZYj7OsZqE9Oz2TKZj3SI822FfL+LOVoUjvQmmezVyvSJ+oghse5gmzVg33za3rSxNBFzMe5zLeywHCi0kOQ07E82htmG6t/X53PAE5wohl/NllsJJ1oM5VsNqxn671OiOjmU2A2yzkUAYS6BTwqRBjssOsHnL4zpQu7UZdr/nrwNrOQQB/QcnS5otow/W+qyaGf9+VhUuhM70u32glmdJ3snjtVuZbVv21RUqy0pcKcK5KpR1m33tJWa7q6js/qSRNIJJ1sMZIq+wcYOpJpeZjp7Ht47x7soKi7mjdL2JrX/ffgstf5VT/6+TW87zSuMGQHudx6v1A88vLvD/+WDpui3vekYhMZxYjrhzqcf+TECKiLCqjlCNsZJzawJMMoMxZVAdPFkH1cluEiOATHay9NyGlVmBHQVLiBEWzA1ifUC2ZaptFJAMmLENYGyw7FEwNg7ErAVDgCaHHbBfBVIKJKKIlk6fpIxBGY00BmENyho8nWQ6MNf/kkFj5dGb5VcCwDamXtXI+2yewfxgxQiMGNOWjcYwJWZFBoqzySCxQmFwujcQxNLS8GOaXkzPS4kyYF5MPcpJQC1SFFNBYFzazC2+zxJtN/CCRtH1JOuBYj6vuFL0aXghUijyRjITOUCwsWE21iIMJLgzxBqL1AmFtMmUXiUvlh1w81a2MCBVmHSKtqgQKYMvupRMB7UFwxZJjxcLOT41lecjMz5LOZ1VNVqEcOeT6J9bg3Nwc3gGZnsOsO3ows6eYEe3/1kxkajxFfe7UIwAOCPTzds4EomAhZzHYlhkNaiwlCuxGBZYCAus+Cktv01XdgiMKxyYjQNmooCZ2Gc6Ukyk27NbkYQVH1YCWPegoQxadPBNk4JuMh33mOslzPU0O3uWyfjq4M2IlF6wRi9Ypheu0g7XWK0UOF+b5ZnSDOdEleU0T9vkMVdl3Vyj+5vbcKJZ5GC3wlRUJh8X8LTEt+MVpcPK0q21oRq4klNczHm0PHc9VLVmLrLs7oC3xcjnwF6OK/kyy+EUK+EU87kqkfLJp7C7DTva7vvl1D0MeTqhqK8Qikv4ch4pu4wy126I3ZwRcIAtHJkCEBY76OWb4rp3OJZtvLpdgvWwmLFuBtaE1DnOZ6dPsqMpObTuHiZSYfncnOHPdisQKW9eXuFtS0vs7A2lBvP5Hn82vZdHq9N4KGbSVfbYR6jpJQ6v1ThQDwfayUaQZym3k0hOImwBYXNj+ybCNU78653XxQC3HzcA2us8XjWAtvIiv/Dhn8RchQXrh0bwZf8YXZFj1qxwS3ou+8/Vv2uBWHmsywkW2UWDHRic/5OyPtWkSjnZhzJllLEcX4t5w2KXY+tJdiNKh6BMDX2JnNh/CmMKCNlFqr5hbAyikxnEdtnKVX+sT+UYIBtS/9vqdvrU/Qg7thmMZc3Ix9JBbjJWYkSQsV8lUlEiEUVSUcQQgiUDXA6ECWscILMpnnGGncg+AEuywdOxSGK4gdcMwBx30d924ToJbEyv9rf/q57VutoKX97GDM6AEZH7+BI20gbD/dZCEElJpBSRVGipEEg8JEJIUqGwUg6ApkXQ9gRNDyIBWixR1ueZSVaYSjoUaLlU8sZt1GVsWnMfZG+z1162XR3p81yxyF9MT/Dx6Tz1IAXRw4oIS88BdKBoY/ImxTeADUlFkYgKPVF2QnQkwrp9EVaS1w647egJdnQNO3qaHT3DbM8wExlyAzwxzroNQdzW7cT60VYei2GBxVyR+bDAxVyeS2GBtSBEAaE2FFPDdOymydhQS9xUSg0Kg7QGaa3TyCGxWeWwEZKulLR8ScNzU1vZTH/UITBdSmmP2ShhR88w17P4L1X56zXohat0g2XqYYeFco4XK9M8U6zxgirTsEUStu/qYDHk0oTbWj63tgrs65aYjIvkkhBlBJ7tjAO3QWXp9t6Ci4FiMVR0lMS3lmpime1CyWy9L0tBwJV8heVwioVclfmwirB5dncEu9qWnV0IjANsga1T1BcJxEX8QbumUbAmgc3V5g7HjYA1fCxk8yVYooEObmMK1FqNkL3BMq0JiMwhni7dRqlbY0fHFYF0VMwXd17gQzv3YGTATc0Wb19c4tT62iA12vHgI7NVPrBjmkv5gFlzjpvF+9hjHubNF97GrfN3IpEgBeptB1HvOcLy0he4/NgfsX75NMIUkF6Ru3/4v+IF23sHvty4AdBe5/Fq/cDt3io/94F3Dz4LoQi8PL5XIPAK+P33fp6P9Qp8rgsVJfh/7N5JLSzhZ/P0502xLPSWuNK9zMX2eZ5dO8eL3QotezMpk24lVlBJqsxFuynEt1JJJLevpZxc7nGgEWX960zWN7EBqjV2UVtdBZN3QEytI1QL17KnX4G5WRQ9EKUPBPbu82De7dJjoxqcDJRtYpFs5iU29n8Pg48WeRKKJKJKQgVDHotCWYPSBmU1nomQNsGzCZIEQUK/n54b+HQGvjbowF4Cn/SvDjsCHIfgawScjmnpXlkYBImU9JSi6SnWAp/FnE/D85hMNBNxSiXRFLQmrw2B0Rno1K8M89ktPm6BDK4KwL4GYRAYIUglGNkGuYqS6/iiiaK7tXhbl10KeGBzsBlIJoSsqRqn87v4Um2Wy0WfSEpSKUmkIpWKRLp1v5yQ1hJqQ2gMgdbUkpQdvZiZXsxUnDAZJdSSlEqaUkpTpB1JmQ7E5G7azsvO7QOMPxT0meZh94vrFQZBKiSpEKRSoIXFCIvFIDH41pDTFv8lLgcjUiK/Ti9osBb0uFT0OFOq8EypyDP5Eg1ZZAuL48H+TsWW4808N7dy7O4VqCU5cqmPsKDobWLbXGXp5gKVfqx7ktVAkUgIjKUaCyaTUenBMNrKYz5XZTFXYz5XIaZKISmzqyuZ6VokAmFjcvYKBXORUFxGiX7Gwh0Y208ti5TNdkM4oJaBtWERTIQVPcSGbh3uXtU3x82Amg2w6U4W/ZsQyQyF2HUbWM21+eStmt/PBxSsx85Ic/fSKvcuLTMVD7Mqj1dLfHCuxl9OlZi257hJ/Ro3Rc9w99l3cXDtZjdTzsP7pqN47zhMt32JS0//HkL6HHnzP9r2OL+SuAHQXufxqtlsGE2zu5ABrAJK+ltWAz6ycpa/96n/xmjV5lpviRfrpzmz/gxn6qc5Uz/NQucixvp0OUTbHiViD/2bQzEJOVnfy/7WUaaiMntamoP1LhPdCN9kIEm2QdVBNcc1DLqANQrhNZx+Ieuj6ISqW1epDUu/+wxWn6rvA7ItDki/v+VYUcDogNEvJXcMmcXD2IBUFEmoEIsqqSmhLHhEeCZGkaBsjCR14AudMV9u20efUrONuKbxqA86neWFGgFgo9Oo4P6VRSqGwGs98FkKfZZyAfM5n0s5J3pu+1dPJW0MaaGYQiWxzMSG2UgzE2kmY00t0ZRTTSlNCbVGGY1vUpTRKKuvqnm8WrgjnFXJorI0qsIIB17anqHtGSKp0cKSM4JSIiinkNMWaQ2Cjb0Ut9uWl8FiDiLNHkrqCFnPjEg3p8CcDsjLNFE28xwcTZNn6SddBF0DO2QCrLAYkV0BAizW1Z/0l2VtX33pihJezua/ZPRTppq+798QxG3/LQ30pKTpCRq+YM0XrPuCRAikFQRWktOWQgpFLcinkrxWhEYQaIlnt04JXtv2XuX1ar+tdcfaYkmFIVbQVZKWJ6kr19+zpySxcgUEkRL0JMQSCqnHdBIwGQdUdEhOByjrY4RA2BRFG9+2CGwT37ruCcE2HQ8AOlJQ9x04D7VgIhEDjdfoTqRCsBhWWAqrdGUFaaqU4iqVxHfsGqvk7CXy9gKBWB/bWXfO9T0nk01dVIDMyiMAguz+6VhfB/D68/QB/rCLgbUBpHPEdo7EziDSGQwFzhXbvO+Q5Us1y6wS3Nu8QHU9x+1rmuP1+uDcXfN9PjY7yYdna3SDixzxfpWTzYvce/Z+ZtpZ0/WJPP63H0fdtQchr/+D3A2A9jqPr+UP3Ekj/sbH/yOXO3VuLRe4Ob/Imfpp1qOVwTzWQsRu2vYWeuYwhbTGvtYMR+szHK9PsrdVYiJSBKkhl8b4Jsp631l3kao6eA2GfeD6lHriBNeik7FjfYC1GWSNpy3FSMrvWlKVffYr+36/rYkNgdDphWyAJo/GpSKllS7dQp/5ShGDNE9/O/sr2gDCXgYAc9ouOWTpBiBsCDxfSVggkoq251EPfNZ9n+XQYyHncSXncSHvs5hTpFJCNsgFFsJs8k1KgMGzFh/HOCgr8BB4VrqODhZSYUikJhIpkUzpyoSOTGipmEhoetKQCvdbiAwQCxQi8/aqJR7V1PW3rCaSiRimI8tUbByYS1JCnRDoFM+4SVkzBFTby89e4vi41K/GI1KKnvLoSaeN8yyExpJPDZ517Xn6jbSGRxcyZVp2qo7+T2SM7UhaPfvcH9itMNkDSwMpmwjRHPPzG2znwCxUONQlRoE52bkTuOb1ppKd0y8zPbxJQzj6/Y1/64+2W8+rhcnSkw5iSlyhhRqAtdGU6dZtzUajJ13BwloAy4FlKWdZC2Ddt4O2VWu+pScFoZFMR4rpWDEd+UzGOSbiArWkQCUJyWnl1I92OIn+e4afrTVINNKmrtrX9tOv13h9b3s8t2a8rrYYi8RkVZRWxJkNTIQUEUJE2y4pBSLp9G2h6ad7RycX636BhqqiRZUwqSBsFWshL66QsxfJcWVMS9dnz1zrOXd/HzUHH86XdR/Bw53/EaO6X2v73Q76QM2HdAeYSVJbRJtpUjvFY1X45cMpL5Y175xY4u+d/hPONGbwkiPcVJeUU7dtGni8VuWjc1M8VYmZU7/LO9ee4q3n30E5rrqjvq+G/123o2660YvzK40bAO1ViNQkXGyeyRgxx4x9fjVm1e5C0WMXn0GSYkyBMNrPbPN2djfewO7mPva0ysz1QmqRIp8IvMGDsXVsUaaZcm4REVbWEV5f7J863cxg6jGuCduOJeunG92AJ7ZlxmCziF+OMGKhG8AInLYtY8fIbjJirOXS6OtWIIxXBsAGbv/DdOmmfbjGcdUAHc+j5fnUfY/V0GMlcABsOfRYCz0iz8ND4OMsGzwLisxygszWATHYiu0qB69HOHmxRQtDIjSxcExWJDRdpekIQyQtiRDoPoDLQJyyinIiqWhJJZWUUyglUNFQSaAWa6Z7McU0ItAJQRo7Rs6mjpGzW/yOgpHPbEh/bzwPtn7/6vi2JbguFq3Mm621pb7S4mfnbp8R7p9nuHSpyWPTCYhngBKjhR4GS9uHlmdo+dDyLF1P0/UMiXKpS99oAqMJrME3lqIVlKwkryFMLYEGpQXCONDdr8a+eowe1yHAhcQxbXKoc+uzcC/3GBugq6DhuSb1yznrCg4yMNdSEi0DLBLP+oQ6YDIpMZmUmYhL1JI83lXMgLEWaTXYGGt7SBvhmYicjsinEUWdUNRXSfXiroVUGtfDUwi0cJIEibun5jNblWveY5FkcomN07YbwHjx0mbgZqzE4Co6jc1hhUGKNp5cQ4rxhwhrPddiykj3ACu7GUO28dD1H0JtlhLv/33ca81aD9JpMLNYK9G2QmqnebJa5b8dTnmhvEIt9wXuXbvMOy/OM9k9Tj65iZnO8HdbDEM+NTPNp6ZrSP8pvmXxy9xzZQehDrCeIP/v3osob68tfLlxA6C9zuPV+oEb0RqfufxnDpCtP8P55gskJsZLi1TbRyl3jlPs3MFsp8bedp7d7SrT3Ty1WOFvKUrtD3Dp8MYg+09BKaimS92o+gYwpse/n1VNbivuz2Ign9q4CVmiZsiMjfjxmALYnKPO6bfN2erJdSPzZXkpA9aN22EHyx7RfY2mIUdFytc42Ggh6Hgebc+n6Xs0fY964FiweuDRCRzjI4UYJPT6C/9KMUN2ixz+QsKiMRhhSYUDWamwYAy+tvhGkCoPKxW+lRm7Jjbd/kdDWItnDL4xeNYM349MKiuckMYMGAw58ndlDL7VBMYQGEOoDTljCLUlMFerx7v+sZl9Gn0vRs7X4WQQrmtDloYVViGNsx+Qg4rgjD1VdefL5q24alG5Od1lMm2XGK2+zdZt8OhSJUl3kOscINBXF0c3PVgowEJesJCH+Tws5C3zectKzqCls3ZxxqYpUmp8DHkMBWPIG00hSQjSHkrHCKMzFk2ijHTMtJGEOk85LWTtkMT/v70zD5OqOvP/95y71NbVG3SzNqAgRAzKSMJiNGhQcA0TdTTRMToaQ9QRFWMSMj8HHZ+BiSbqaBh3wQUFdYz6BAaDuKEDZtTGIK5syr5003tX3eW8vz/Oreqq7uru6raRRt7P8xR03Tr33nNvnbr3e9/tIOIpxH0PUddFyHcQ8zxEfR8hpWDCh2i3zltKzHX9dqEANJjaCldtE6pChEZDImlY8IW2/kiEYasYwn4h4l4McT/c4TYF+bB9B0RJAAkYgYCLegkUug6sTm5r9aaLvWEfu8ISu0M29oRs1FgSNZaAI4GwL1DRbGNok41+SQPFjkTMF7AUaWsgVOAqbYZBzZBoghQJSJGAQLL985RjnGa9CEjPzyk8QDrQYSgZmwjKdcAP6w1Kff3Pnr0loy0ys+n1eGoRblK78FUf6NkQDPiIYV+oCKv6hrGuaBdqw7shhIc+DnBsncCxtSUYXG/BCkSyLwS+KCjB5qIyJEwL36rZhGZTYeTso1AULenwe+gKLNC+4RyoL/jjLZvx2tMfok9TP/RpLkZZcxxlzSEUubmmT0nFkLTEj5DwoaSCCt5rU3/m1+IDRurGUad/kGj99BTU32l3+qOWBdnzWaYapC4SWvRQyqVD4cCtE0a2SzC1jQxzequn904FWKubLqXdkJlV/jP2macycoVEs2mi2dLWr3rbRL2tBVi9baHRMuEY8iuZZwIHGhRIB0hDwQ8ElicIHghu8J2EXEKBRyhyCHEXKPQV4q6PAs9H1NNB/2FfiyDb92EF9ddk1vnU//sCwfRTOg4q85zrmKfA1dXtI+s6PoCEoauSJwyBpNQxd76UIJgQJGGTgbAvYfuipThs6kUqw7iWa2ylRHqLFheBvO3ON0gUnMOgBAlBlyERgRVZKgFJzTCM/RBmNWBUB8VBcz3otArIh3Zle8LCfqMQ26xybDWGoMCNon+zgX7NAiVOx712BbAvDOwKBNyeCLArEHK7I0DC7JavGSECogRECLnHBxGivkKh46FPwkGfRBIljoMixw0SGBSino+Q8mAp7Z7U17FsEZc9DVvXby+e0AK23hSoNyUSpglf2CCEICkCk6IIqSgkIvCkpUt3ZCsYWMqFrRIw/SQEJWGoJEJ+EjEvgUiOKfgycaTC7rDCzrDEtoiFnRETO8ISOyMCNaaJI5sKcFRjFBXNYfRNWoh7RvbUXUQwg5IglqqFiVqYVIeIqodF7e+bIDKmVmttbRMQwtfu1tbZn8oKrtF2YCVt7kCwISN0pGVSdyKZ4b6PQs/kkTm2s122+lokggCGlu/YExJNpo2qUAQj/nUg7HifDs91V2CB9g3nQH3Ba9Z8gDHzhyF9YcrIvCKhQDLIwAoynDpFJHWQc3BjgGzMcaFLVd3Xgi/3zQPInssyvSqyq/Ab2j1JwSTAfhg6pkFmuBBTm0nVMctj2OS46ba4UzNFmARaBWm3hyMNNJsmGi0TDZYWXLW2iQbLQJNpIGGaIBnMuxeIFS1aKMh4zFge1D/TT8MtcTL6by120i8FhHxCWAXVxQOrkhlYqgxqEUj6UkbdEg89TfrXLQLbiNBPvL6Azk4UAo5hwJGGLn9hWEiYJhKmCVca8KUIMhh11p6bldWolynZYo3VblYdL+cKD0npoFm6aJYuGqWDRsNBveHBEYSQstDXiaIsYWN4g4UhzQb6JRRKHEKB4yHiebB9D5ZqL0s18+FAT7NEGWdeH3HG7y5Htfe8zmGwh1TyjZC1kEZNO0HcwUNOlmATILLhUhz7jRJsD4WRsBwIg2AbIcQojoJkHNGGCOJ1Nox2Sj2kqLEVdkUUdkW1xW1XRGF3RGFX1Ed1iIJnGQFDaEuhIIFU4g7BAJGFMAFhyghWoMxS0Plh+wpxx0Np0kVZwgmyUV3EXRdx10fE9xH2tRtXz8WaeihtZZ3rAUHXFMQ3OsKGEjYEwjAQhi9seNKGJ2x4woInbQgi2CoJ29eizVCBgFNJRL1kp0kd+2zCjojAjoiJnWGJHWGJZsNGsRdHv2QMgxJhlDomon7KPR5ABAPNsFU9TKqFhBZvEb8eEdV+SZC2VjegZUYQv5U2ldr1riJ6LmCZgJCJQLA5rc5vYCzISDDRD+ZRkApBwAZUJPCUhKCLd6fuG607mB2WogAk/308Sks7toR2BRZo33AO1Bf82dL/xaA/leZ9YXOkQo0t0WBasIhQ4u5HTO2DNGq06zJnMChB/zBaBGCrh8YclrFM10+mGDODH2FECzJlBQIJaLF+dVWAZYowIC28KLBUUTsCLGM/WjgEaftSiwglMid+0XmDKauLQdQivg6BYdwiJ4I6XylrmBQgA1CmAJkCyhKgkACFBUREwgpZCJthKA9QnoByAXIA5Sr4SQVyFMghCJcgfYLhAYYCTKXSUqU7uEFGXNIQSJoCSUNnoiYMHXuXMA00G1YgmCWaTQOuIfK2TKogXs4TPpwg+SEhXTRLTydASB+uAIqTJr7VGMaRDRIDm4HSBKHQ9RBzfYQDAdf5viRUqmAvWixwklICzofIvNG0iaNrDSGVmCNknc4cFY05LRYtrviUdVroByK/CHD7AV45AF3aoS7koMlOwrcUDFsgJC1EKAIzGYFZa8Js7vhBxpGEXREPO6MedsQ87IwmsTPahO0FjdgZrUPSbEIBGlDm7kS5VwubBARZEEEMqUIUShbDRQlcUQiXCuBTFD70zBsgMx27aFDmY17HGEqhwPVR5HgoSzjom3RR4rgocjwUuB6ino+w8hFSOuNYpLNUc7hb0393nvyQC09IuEK7V5XQ4s2Xlv4/iJnVD1sKpu/BIg+mSiCkkjBbz1jRimYJ7LMNVIUMVFkGfBGCraKI+jFEvCgKfAOWCuahyLhkGUjCQB0M1EEILdxsNCBE7U/r17I+5fScpBMNApEFgk5+CKxrLYItl1ATLQ/s6QfqCKDCcKkYTaIUCRTBEQJJmYArm2GSi2LfQZFykJQSff84EbIHg0hZoH3DOVBf8MZ1r2PAf/YHgZAwFOpsHzUWocEieMKAIAsRZSLmEYr8WhSoPbBFDWS65lj29loyKWUgxnRAb/uiKTMWp8VVqctbpIJLU2ZrHbSZb/xXy/ZbWeLSJv1ckVAH33YUyMzgXSBTOopjaidbrvUyH9piRKaEMiTIMkAhAwgboIgBETMh4iZk3IQsMWH2sSBLLVglJoyQQGeTsfcUyie4TQS/xodb5cGv9eDX+FB1Hvx6B36DA2ryIBMKMkkwXYLpE0xfdXoT6nC/AFwp4BoSSUPCMYLCtMGr2TTRbOoZBxotIy3sVCdp+WkxBx+O9IPkBw9JqQAf6N8MDG0UGNBMKEsqFCcVClxthcvneFQQp0YiVVQ4mIeBvIxvPyOWUgQFOkTLz0TAgZA1wQwdde2X+MhMZsm0YPtxwO+jhVt6pozUw43+24NAs0VwbYKwDJjShOFbMJImzEYdd9bWHdVCVcjHzqiLnVEfuyJJ+FIFVl9dHiRlg5RE6Wmm0stTgox0+RBTGDBh6GxjZcAgE1JJyCCpQVvvJCRp152ECP4OLHXB9kSggwVpS55Iu+m9YFYPDxZcSOikFBl4I1ospK1drbnj57qTEKG/L0M/xJIdPNy2ikpNPTBLv8Nzn65rpnQxWlItf0OFkNPxLFxdLNyogwhij3UZmaYcx5Id65tz5gIVAlEYULZ2lQpXF3NGysKWS6iZ0GU9LLQkYQVTVnllILcM8EqgvS66H/vCDeg7vxQxO9KVU90hh6NAyxUkxXSRD79UCIcUQsqFiQT6+kmU+Q5EshlCNEEE5mUIByJHYST9I0g5Fyho6wKivQtK6tcDtC7sCrJ0vBgV6CegYGei1aot6+cSV+2JltYXH5HejHYx6cumJ3V9JdeQQeV47UpzM9xkrtRtBempc0wAltJBuJbSMUoWESwfugRFEK9kkoKhKNt1kFMYtp8vSQA8Q0KZBpRlQNlSC6ywAUQNiJgBUWBAFpowCg0YJQaMYlOLrMjXJ7K+CtIQCMUFEJdAhZX3er5LcBsU/GofbrUHVevBr/Hg1Tnw6h1Qows0K8iEguEQTI9g+drNK0lXSAspQkj5KHA7t2yl9yt0kV43EHSONOCYEs2GgWTwf5NloMmUaLIMNJg2HFMGU1sBMIGqIv1qscwpuFCQvo8Sx0efhEJZQv9fktSlRSKeF7inU27QVh0TqfEtQcENNCVmUqIi3RA2oGIgbxBcKeELCTIaIWQ1DFkNU1bDEI0ZRaADSzkBQJMuKG3tCmpdRQC/APBLoGuwidRhIk4AEgASqXCBQJSZWsgpCD2+DQkIE1AWDMeE6RnokxTok7Tx7f0CQM9Vee9ZAjexnhehk7YUJFNk1EVMzQySUaA6Z4xclpDL7XoVAlq0GD70Sc/uZc4eUYv41gNIC3p93XAB2QR9fcp2WyoytKUyNU9wMKuAogKQKNGu8iABVz+w14OMOm3FFXUwRT3CaEz3K10PLVOwGQkIJNJGAC0SbQjEACiQcKGLlTdDpLI+hQuQB4jgoV8YAJr0NE5GFYT9BYgiqJf9sSPcH9WhItTYYXxvXx1iA3tOoB2OsEDrAbzNLkrFJ4CRElZOxtNINlmFX1MWMuHobJ2OnvCygvgza42FAFUQXMRbvs7MrLcWN1dbwdUSY5ayHLRc8H0hkTB0pmOdZaImZKLaNrEnZGNn2MRe20ajaSBMQHEwnUyR66PQVYh72A/jZQAAJXVJREFUPmKennImGvwd9nUQvK0UTOV3wy2ZOn6NEgK+IdMii0IZIisaiKy4CVlowCg2YJSYMEtMGIUSUsr2d3MYY1gCRokBlBjAcDuvdYgIvgO4dT78fR68/T78Wg9erQO3NgG/3gU1+ZAJH0YS2lrnBRa7wA1rEMEIYpbiHUzRk7VfBHF0QUxc2lpnBq5YU1vntKiz0RiS+DhmwAvcsKm0Fsv1URy424qSHkqSPkoSPgpcD2HPg4FgTtLM+FGR3Y9AtqWFm6V01iX8EIABAAaCADjCh7LqQGaNFm2ogsycLSC9wUbA2A/QDhDpGTU8FYfwymCpArT4yDLWC5DQNeezpqg0ARjBNYCCuVqFTE+ppRNPRDDdkw418GUgnIXU7m4h4AggIQUSAmiW+r1r6JcjCY7QbnE9y4OeeddPFfYVFMRBUhALmSr42/I5CS2uFXTsroKCEgoEH77U/4vgGAxYEDAhyYIUFiQZwfsQhAiydmHo9kGohKEUClOuVsdFadJBseuiwPUQ84KYOd+HGVjxKPW9y1YiLpelLlPQ5bj2tzeGQVqsyeDVcq2X6b996Dg3V4ZBMgIlwnBlCK7sB1cOAQl9XSTSws0X+6FEDWxVjz5uI4q8ekhKibXUfUZBGNp61jJllISgCEAxEDxtvUvXVvOCu0nqXAQP6NQEAQOFtAeFic+gmuLYZw+C7/XP6xww7cMCrQegxiRg7MgprrKfpgA9sB1dj6g9QZYWTRliDEEhTQrraWsolVWpaV3mokWUZbhM0+JLwoOBZsNGTchGbchGrakD7R0p4QbB1lEFFHgKMc9H1FMoa/ZR0eAjpBr1RSwo19DdqvQpfCnhmxLKNkB2ILIiBhCVWmQVmNqaVSRhFJswS00YxQZk6OvMVWTaQwgBMwSYZSZQlv8lhRTBbSYt6Ko9eDUevBoHiZoE/LokqMGDaFaQCYLhAJZLMD3ACpIytBBSwQwaXme7S6MAuIYuHuwYBpJSwjENJIIYu7qQjV2xQNgZEr4UCPk+Cl0fhUkPJUkt5GKuh5DvBb/sXPUDqeXf4COTBOAU6ReGAVBQsh7KrAOMGkijGlI0o0UEuIGlTsCQ9YCxGz4M1FsJNIZrYFAT4sk+UF4JGswYHBGD9AsQ8iMIeRZCvgE7VfowFW8UFJ9u09Xu/IzbhEHoV0umbEr4iUD46emhfCmCaaJSAltb1ZOGgCOljns0BBKmRMIQaDYEmkwB19BlMBwJOKYuGmFA1zSzoKv7GwAspc+1RQQzKCCrX0E9OdOGbwJ7o8Dedg5NECHk+wi5LqKeh4jrIOx5iLguwr6eocP2fVh+ajwGZYM7SYRoLehaii1nnMpWGAAKgCBULONcpwWcCV/a8EQIrgzDkREk5TA4MoZ9poU9JsEXDRCoRdirQ4lXhTjtg4EEtHVNb1wIH0QuUkJeZ3RGQUJnhqZLPZEAkQEhZCuLcAJS1qLc34kN1adj0JBujCkmDQu0HqAh2RfAl60yuFKCzIUOyuygKGSmgErFpMDQrg4/BqgigKxgOhqgtQADskWYgoQnLCSlhWZD/6+EEfykBUyFdG2rsoTCgOYEDNW9kgWZh+CZ2ppFtgGEdExW2mUY0y5DWSRhFGlLllkSxGwZvd9lyPQ8QgrYMQE7JoHB+bthySc4DQp+lQ9vvwenOolkTTPc2iRUvQs0KYhmBTMJmA60qAvi61K/spDvI+T7iLn5WesABILCgGtIONLA/oiFpAzBD+LnBAGWr+vFRXwfIdeHTYHFJz3EW2fRAVBxSCcOYBAAASWatdvKqAEZ+yFkXcuNUXgwARR7QHFDMUB94AkL+2zgy+IqVJdvxhFWMfrXAnZ1Lai+DrVWEvtshapQDHVGEVwUI+T2Qcwphu0bsH0TtpKwfAlLSZhKwlRa7JhBQVepWrI9s8Rd1nG1HJsQaRtQro+7T/rhNRVeEQjClBUw4/+UIFRS6Eg1qcW2L1MhFzpG0pECTjBtVEIKNJkSzZaBhCmQtCSSsTAcCaCjOEkiRHyFqOsh7nooSejyJHHHRYHnIeLqJAg7iPHUhZ1T7tn2EiH8rGUiFayXI2vSgKszRDPi/VPnSz86GFDChBKmFnGiHPvFECRFGAIuCmg7omoPTJEq2qyFZouHRWf5E6UK5JIumBuE1lD6nqdjpQkKGz/fgTFjh3317/ww5pAUaPPnz8cdd9yBXbt24bjjjsO9996L8ePHH7T+fGefBBCFvoAG1f6h2tSrSZNlITPTFjJSNoSKAaoYgImW+vNIhzIg9WNL/eBgQJAJBBdSHU8jEMzWhrhOeM77WHwh4JsCvmWAQhKIGBBRCzJwGYp4EJtVZGh3YYl2IyIkD4nYLObQRxgCoSIDKDKgR3kUQEmn6/mOglfnw6vy4VQ5aK5uglOTgFfngBp9yCaCkSAYScByAcvTlpjUw4tJBNP3EM4/tA4EnTThCy0cQCIo4QJd6iVtvchcIwT4/UB+P72E/CDWqCZdeiczy9GCiwEu0H+PAHYXQsFCoyzGp9FjsKV/HDIuEY1JlNgejqEmlDVXw2zYA1m3Ccpx4EkHnnLgmC484cOVPpplUCpFquCV8bfwtQszSKzQR6FDLgTZMFQIUoVhqigsrxC2XwBLRWF7Udh+GKYKwfJtWMqEpfQsFobS16+WhIRUwZRW5WpaCZTWQRsG0CIEU/934ftq8+VlhoMgUwDqa2WLOziYOD6wDqYsgp60UW2F4YREWgwmDS0aBQhCEcK+h4jnosD3EfM8RDwfEU9ntJoqlaEeOORzJkJkzM2aJeh093XPPUh4AAE2NbRzwDEQYvChIGQCMj1Pc8v5pmDydiIHLVmgeoo+wAKRNjCQMlFdtRnACd08+QxwCAq0JUuWYNasWbj//vsxYcIE3H333Zg2bRo+/fRTlJeXH5Q+Dfa3QNg1wbscj4lZgiw7uxKqQBcHhJm2i7UkDciM/3VdMj1xUEsIbVv0NlxDwDMFfEvAD0mdYRg1YMUtWIU2jMJUbJa2ZMm4CcQMiC5O2M0whwqGLWH0lQj1tRBDGCXoPBOMiOAnCW6VB7faReO+Rjj7A2tdnQc0ahesmQAsR8B0BWwf6Rtr2g3bxb5SpgARQlvRVRHIHao/F82BYNunY9VSN0vhwYCHQjTi243b8e1GA0QhJEQf7DdHoNo6FtVSX/abrASUoXQoaxD/lfkCKCgFk4pdErqQHgQsP3CvEdIxYYJkIEC1F0FAgoR2RSYBnQgYHFRrDZW5zBcOfJmAL5LwZAI+mkAiCYFmKJ0dAUEODOXBJA+mAizfgK0MWL4JM/jfUob+W+llpjL0TAskg79FMBdwkF2K1NW1pU+ZPc2OgEW2VbC7IrD19tKyFFDCgA+dcEUiCPcnIDUdn86ATSXnZArbYHMiw5yWGeeYttJRYERIWcxSd6mgaC2iIPhoma0ms46aDSJLu0PTy53gHmYBUsFODOyBk3J4c8iV2ZgwYQK++93v4o9//CMAQCmFiooKXHvttfjNb37T4boHKk235uqnEA7tzF6YCrhPW8hMnV0ZCDLKSlnOTLtvKRWpoC9uring2QJeSEBFBChqwIibsIosRIpDiJSGYJbo0g4iFrgVOylbwDDMgYOI4DUouFUOGvc2oqmqCc7+BPw6D1TvQjYSjGYJKylheVKLOp9gdTvUwNNFrY29evaDdLxQ637pGUI8VYRGVMAVBenP2u6Xsv5sv1/53EIy3J95tO68TQeFoLPCufK9vVGrdQOBHFivtGuX0ttLWfha2ra26LW8F9rP2Ko/wecH9DLd+tipzbuW/mRa31KJBCpjHdI+/NQcpNLN8BBpKxrBzZhCSuAv3xuB6f/wwx47Gi6z0ctxHAfvvfceZs+enV4mpcSpp56K1atXt2mfTCaRTLa49+rq6g5Iv3aLgRhKu5BdDNYCUUQH9Psl8GQESSnRbAkkIga8mISKCiBuwCw0ESqxES0No7BPFKF4CLJAuw0L2G3IMIccQghYcQNWPILosPxLDShfwa3x0binAQ1765GsboZbnYC/XwH1EkbChOUYsD2h50T1CZbyYZAJ+H0Bvy/IAQACBUkFwqwK6mYFN12RgCUTKMbuA3b8zOFHS2EjLVg3VuUf38nk5pASaPv27YPv++jXr1/W8n79+uGTTz5p037evHm49dZbD3i/Qr8aBfrDBhBFUStKsHGogeh3S9B/+FCUlBYhGumslg/DMAwgDYlQH4lQnxKUHt15XF0KL+mjaW8janfWoHZrPRp2eWjeV4BQcxn6NEkUJxXCfiNM80sIcx+EbEJXMl8ZpnNE1t83zDj3oPXkm8IhJdC6yuzZszFr1qz0+7q6OlRUVPT4foYNHQDc8zP4pDBASAzo8T0wDMO0jxkyUDi4EIWDC1Hx3Y5a/t3X1SXmMGXVmtX48NVGXMXen6/MISXQ+vbtC8MwsHt3tml+9+7d6N+/bVG8UCiEUOjrs14ZggPsGYZhmMOXkyZOwkkTD3YvvhkcUorCtm2MGzcOK1euTC9TSmHlypWYNGnSQewZwzAMwzBMz3FIWdAAYNasWbj00kvxne98B+PHj8fdd9+NxsZG/NM//dPB7hrDMAzDMEyPcMgJtAsvvBB79+7Fv/7rv2LXrl0YO3Ysli9f3iZxgGEYhmEY5lDlkKuD9lU4HOuoMAzDMMyhzuF4/z6kYtAYhmEYhmEOB1igMQzDMAzD9DJYoDEMwzAMw/QyWKAxDMMwDMP0MligMQzDMAzD9DJYoDEMwzAMw/QyWKAxDMMwDMP0MligMQzDMAzD9DJYoDEMwzAMw/QyDrmpnr4KqUkT6urqDnJPGIZhGIbJl9R9+zCa/OjwEmj19fUAgIqKioPcE4ZhGIZhukp9fT2KiooOdje+Fg6ruTiVUtixYwfi8TiEED267bq6OlRUVGDr1q2HzTxhzIGHxxVzoOCxxRwIDtS4IiLU19dj4MCBkPLwiM46rCxoUkoMHjz4gO6jsLCQL3ZMj8PjijlQ8NhiDgQHYlwdLpazFIeHDGUYhmEYhjmEYIHGMAzDMAzTy2CB1kOEQiHMmTMHoVDoYHeF+QbB44o5UPDYYg4EPK56jsMqSYBhGIZhGOZQgC1oDMMwDMMwvQwWaAzDMAzDML0MFmgMwzAMwzC9DBZoDMMwDMMwvYwuCbRhw4ZBCNHmdc011wAAdu3ahUsuuQT9+/dHLBbD8ccfj//+7//O2sZnn32G6dOno2/fvigsLMSJJ56I1157Lf35woULc+5DCIE9e/ak273++us4/vjjEQqFMGLECCxcuLBLfe2I6upqXHvttRg1ahQikQiGDBmCmTNnora2Nqvdl19+ibPOOgvRaBTl5eW46aab4Hle+vOdO3fioosuwsiRIyGlxPXXX99mXyeffHLOfp511lnpNs8//zymTp2KPn36QAiBtWvXdqu/M2fOxLhx4xAKhTB27Ng2ffn0009xyimnoF+/fgiHwzjyyCPx//7f/4Prup2eMwBoamrC7NmzMXz4cITDYZSVlWHy5Ml48cUXO1yPx1XPjysAuPvuu9P7qqiowA033IBEIpHVZv78+Rg2bBjC4TAmTJiAv/71r1mfP/jggzj55JNRWFgIIQRqamqyPt+yZQuuuOIKHHHEEYhEIhg+fDjmzJkDx3Gy2j3zzDMYO3YsotEohg4dijvuuKPT85XC9338x3/8B771rW8hEomgtLQUEyZMwMMPP9zpujy2eu/YmjFjBoYPH45IJIKysjJMnz4dn3zySVYbvmbxuMocV2+++SbOOeccDBw4EEIIvPDCC2220VP3S0B/B8ceeyzC4TDKy8vzOmcpHnroIRx33HEoKChAcXEx/u7v/g7z5s3Le30AAHWBPXv20M6dO9OvFStWEAB67bXXiIjotNNOo+9+97v0zjvv0MaNG+m2224jKSW9//776W0cddRRdOaZZ9IHH3xAn332GV199dUUjUZp586dRETU1NSUtY+dO3fStGnTaPLkyeltbNq0iaLRKM2aNYs++ugjuvfee8kwDFq+fHnefe2IdevW0bnnnksvvfQSbdiwgVauXElHHXUUnXfeeek2nufRt7/9bTr11FOpsrKSli1bRn379qXZs2en22zevJlmzpxJjz32GI0dO5auu+66NvuqqqrK6ueHH35IhmHQggUL0m0ef/xxuvXWW+mhhx4iAFRZWdnl/hIRXXvttfTHP/6RLrnkEjruuOPa9GXjxo306KOP0tq1a2nLli304osvUnl5edYxdcQll1xCI0eOpKVLl9LmzZvp3XffpXvuuYceeeSRDtfjcdXz42rRokUUCoVo0aJFtHnzZnr55ZdpwIABdMMNN6TbLF68mGzbpkcffZTWr19PV155JRUXF9Pu3bvTbe666y6aN28ezZs3jwDQ/v37s/bzP//zP3TZZZfRyy+/TBs3bkyPmRtvvDHdZtmyZWSaJt133320ceNG+vOf/0wDBgyge++9t9NzRkR08803U3l5OT3zzDO0adMmWrt2LT388MN0xx13dLouj63eO7YeeOABeuONN2jz5s303nvv0TnnnEMVFRXkeV66DV+zeFxljqtly5bRv/zLv9Dzzz9PAOhPf/pTm+301P3yD3/4Aw0cOJAWLVpEGzZsoA8++IBefPHFTs8ZEdEjjzxC0WiUHn74Yfr888/pww8/pKeeeop++9vf5rV+ii4JtNZcd911NHz4cFJKERFRLBajxx9/PKtNaWkpPfTQQ0REtHfvXgJAb775Zvrzuro6AkArVqzIuY89e/aQZVlZ2/3Vr35FxxxzTFa7Cy+8kKZNm5Z3X7vKM888Q7Ztk+u6RKQHipSSdu3alW5z3333UWFhISWTyTbrT548OeegbM1dd91F8XicGhoa2ny2efPmnAMun/5mMmfOnJwXu1zccMMNdOKJJ+bVtqioiBYuXJhX247gcfXVx9U111xDP/jBD7KWzZo1i773ve+l348fP56uueaa9Hvf92ngwIE0b968Ntt77bXXcgq0XNx+++10xBFHpN//5Cc/ofPPPz+rzT333EODBw/O67wdd9xxdMstt3TaLh94bPW+sZXigw8+IAC0YcOGNp/xNYvHVWvaE2gpvsr9srq6miKRCL3yyiudrpuL6dOn02WXXdatdTPpdgya4zh48skncfnll6cnHj/hhBOwZMkSVFdXQymFxYsXI5FI4OSTTwYA9OnTB6NGjcLjjz+OxsZGeJ6HBx54AOXl5Rg3blzO/Tz++OOIRqM4//zz08tWr16NU089NavdtGnTsHr16rz72lVqa2tRWFgI0zTTfRgzZgz69euX1Ye6ujqsX7++W/sAgEceeQQ//vGPEYvFur2NXP3tDhs2bMDy5csxefLkvNr3798fy5YtQ319fbf3yeOqZ8bVCSecgPfeey/tVtq0aROWLVuGM888M9339957L+t4pZQ49dRT2z3erhxTaWlp+n0ymUQ4HM5qE4lEsG3bNnzxxRedbq9///549dVXsXfv3q/ULx5bvXdsNTY2YsGCBTjiiCNQUVHR5WNNwdesb+64OpC0PqYVK1ZAKYXt27fj6KOPxuDBg3HBBRdg69ateW2vf//+WLNmTV7Xtw7prrJbsmQJGYZB27dvTy/bv38/TZ06lQCQaZpUWFhIL7/8ctZ6W7dupXHjxpEQggzDoAEDBmSZfVtz9NFH01VXXZW17KijjqK5c+dmLVu6dCkBoKamprz62hX27t1LQ4YMyTJPXnnllTR16tSsdo2NjQSAli1b1mYb+VjQ3nnnHQJA77zzTs7P830iyNXfTDp7Gp00aRKFQiECQD//+c/J9/0O95fijTfeoMGDB5NlWfSd73yHrr/+enrrrbfyWjcFj6ueG1f/+Z//SZZlkWmaBIB+8YtfpD/bvn07AaD//d//zVrnpptuovHjx7fZVr4WtM8//5wKCwvpwQcfTC974IEHKBqN0iuvvEK+79Onn35K3/rWt3LuPxfr16+no48+mqSUNGbMGJoxY0bOc9EZPLZ639iaP38+xWIxAkCjRo3KaT0j4msWEY+r1qCHLGi5jmnevHlkWRaNGjWKli9fTqtXr6YpU6bQqFGjcloFW7Njxw6aOHEiAaCRI0fSpZdeSkuWLMl7XKbotgXtkUcewRlnnIGBAweml918882oqanBK6+8gnfffRezZs3CBRdcgHXr1qXEIK655hqUl5dj1apV+Otf/4q///u/xznnnIOdO3e22cfq1avx8ccf44orruhuN9vta77U1dXhrLPOwujRo3HLLbd8pX50xiOPPIIxY8Zg/Pjx3d5GT/R3yZIleP/99/HUU09h6dKl+P3vf5/Xet///vexadMmrFy5Eueffz7Wr1+Pk046Cbfddlve++Zx1TO8/vrrmDt3Lv7rv/4L77//Pp5//nksXbq0S99FV9m+fTtOP/10/MM//AOuvPLK9PIrr7wS//zP/4yzzz4btm1j4sSJ+PGPfwxAW1Y6Y/To0fjwww+xZs0aXH755dizZw/OOecc/OxnP+tS/3hs9Qw9ObYuvvhiVFZW4o033sDIkSNxwQUXtEk2yAe+ZnW/r/lyKI2rfGnvmJRScF0X99xzD6ZNm4aJEyfi6aefxueff56VyNEeAwYMwOrVq7Fu3Tpcd9118DwPl156KU4//XQopfLvYJfkXMCWLVtISkkvvPBCetmGDRsIAH344YdZbadMmUIzZswgIqJXXnmFpJRUW1ub1WbEiBE5YxMuv/xyGjt2bJvlJ510UhsF/uijj1JhYWFefc2Xuro6mjRpEk2ZMoWam5uzPrv55pvbPNFt2rSJAOR8CurMgtbQ0ECFhYV09913t9umsyeCjvqbSVfiOZ544gmKRCJZgbtd4bbbbiPLsvJ66uBx1XPj6sQTT6Rf/vKXWctS36Xv+5RMJskwjDZPoD/96U/phz/8YZvtdWZB2759Ox111FF0ySWXtPuU6Hkebdu2jZLJJC1btowA0J49e3K27YwnnniCANCmTZvyas9jq/eOrRTJZJKi0Sg99dRTbT7jaxaPq9bgK1rQOjqmRx99lADQ1q1bs5aXl5dneQe6wqpVqwgAvfrqq3mv0y0L2oIFC1BeXp5VCqKpqQlA2ydiwzDSirG9NlLKNqqyoaEBzzzzTM4nhkmTJmHlypVZy1asWIFJkybl1dd8qKurw9SpU2HbNl566aU2MTSTJk3CunXrstKdV6xYgcLCQowePbpL+wKAZ599FslkEv/4j//Y5XXz6W93ST1JdEn1ZzB69Gh4npfXUzGPq54bV01NTTnPGaCf3m3bxrhx47KOVymFlStX5jzejti+fTtOPvlkjBs3DgsWLGjXKmYYBgYNGgTbtvH0009j0qRJKCsr69K+UqTORWNjY17teWz1/rFFOmkNyWQy777kgq9Z38xx1ZN0dkzf+973AOgyLimqq6uxb98+DB06tFv77Oo1C0DXLWi+79OQIUPo17/+ddZyx3FoxIgRdNJJJ9E777xDGzZsoN///vckhKClS5cSkfb19unTh84991xau3Ytffrpp/TLX/6SLMuitWvXZm3v4YcfpnA4nPOJPZVafNNNN9HHH39M8+fPb5Na3FFfO6O2tpYmTJhAY8aMoQ0bNmSlKKeeylKpxVOnTqW1a9fS8uXLqaysrE16d2VlJVVWVtK4cePooosuosrKSlq/fn2bfZ544ol04YUX5uxPVVUVVVZWpmMLFi9eTJWVlel07Hz6S6TjgyorK2nGjBk0cuTIdN9ST4pPPvkkLVmyhD766CPauHEjLVmyhAYOHEgXX3xxXudt8uTJdP/999O7775LmzdvpqVLl9KoUaPaZObkgsdVz46rOXPmUDwep6effpo2bdpEf/nLX2j48OF0wQUXpNssXryYQqEQLVy4kD766CP6+c9/TsXFxVnZWDt37qTKysp0yvqbb75JlZWVVFVVRURE27ZtoxEjRtCUKVNo27ZtWceUYu/evXTffffRxx9/TJWVlTRz5kwKh8Ptxlq25rzzzqM777yT1qxZQ1u2bKHXXnuNJk6cSCNHjsyZpdwaHlu9b2xt3LiR5s6dS++++y598cUX9Pbbb9M555xDpaWlWaU4+JrF4ypzXNXX16e3A4DuvPNOqqyspC+++CLdpqful9OnT6djjjmG3n77bVq3bh2dffbZNHr0aHIcp9Pz9otf/IL+7d/+jd566y3asmULrV69ms466ywqKyujffv25X3+uyzQXn75ZQJAn376aZvPPvvsMzr33HOpvLycotEoHXvssW1Sjf/v//6Ppk6dSqWlpRSPx2nixIk5AwknTZpEF110Ubv9eO2112js2LFk2zYdeeSRWXXD8ulrR6TcOblemzdvTrfbsmULnXHGGRSJRKhv37504403trlh5NrG0KFDs9p88sknBID+8pe/5OzPggULcm5nzpw5Xerv5MmTO2yzePFiOv7446mgoIBisRiNHj2a5s6d26G7NJO5c+fSpEmTqLS0lMLhMB155JE0c+bMvAYkj6vN6XY9Ma5c16VbbrmFhg8fTuFwmCoqKujqq69uc5G/9957aciQIWTbNo0fP57WrFmT9fmcOXNy7it1Xtobm5nPfnv37qWJEydSLBajaDRKU6ZMabOfjnjwwQfplFNOobKyMrJtm4YMGUKXXXYZbdmyJa/1eWxtTrfrLWNr+/btdMYZZ1B5eTlZlkWDBw+miy66iD755JOsbfA1i8dV5rhqrz+XXnppuk1P3S9ra2vp8ssvp+LiYiotLaUf/ehH9OWXX+Z13p577jk688wzacCAAWTbNg0cOJDOO+88+tvf/pbvqSciIhGcOIZhGIZhGKaXwHNxMgzDMAzD9DIOS4G2aNEiFBQU5Hwdc8wxB7t7vZb2zllBQQFWrVp1sLt30OFx1T2OOeaYds/bokWLDnb3egU8troHX7M6hsdV9zjjjDPaPW9z587tsf0cli7O+vp67N69O+dnlmV1O0vjm86GDRva/WzQoEGIRCJfY296HzyuuscXX3zR7uTW/fr1Qzwe/5p71PvgsdU9+JrVMTyuusf27dvR3Nyc87PS0tKsmVS+CoelQGMYhmEYhunNHJYuToZhGIZhmN4MCzSGYRiGYZheBgs0hmEYhmGYXgYLNIZhGIZhmF4GCzSGYRgAQgi88MILB7sbDMMwAFigMQzzNbJ3715cddVVGDJkCEKhEPr3749p06bh7bffPthdYxiG6VWYB7sDDMMcPpx33nlwHAePPfYYjjzySOzevRsrV65EVVXVwe4awzBMr4ItaAzDfC3U1NRg1apV+N3vfodTTjkFQ4cOxfjx4zF79mz88Ic/BADceeedGDNmDGKxGCoqKnD11VejoaEhvY2FCxeiuLgYf/7znzFq1ChEo1Gcf/75aGpqwmOPPYZhw4ahpKQEM2fOhO/76fWGDRuG2267DT/5yU8Qi8UwaNAgzJ8/v8P+bt26FRdccAGKi4tRWlqK6dOnY8uWLQfk3DAMw7SGBRrDMF8LqalQXnjhBSSTyZxtpJS45557sH79ejz22GN49dVX8atf/SqrTVNTE+655x4sXrwYy5cvx+uvv44f/ehHWLZsGZYtW4YnnngCDzzwAJ577rms9e644w4cd9xxqKysxG9+8xtcd911WLFiRc5+uK6LadOmIR6PY9WqVXj77bdRUFCA008/HY7j9MwJYRiG6QhiGIb5mnjuueeopKSEwuEwnXDCCTR79mz64IMP2m3/7LPPUp8+fdLvFyxYQABow4YN6WUzZsygaDRK9fX16WXTpk2jGTNmpN8PHTqUTj/99KxtX3jhhXTGGWek3wOgP/3pT0RE9MQTT9CoUaNIKZX+PJlMUiQSoZdffrnrB84wDNNF2ILGMMzXxnnnnYcdO3bgpZdewumnn47XX38dxx9/PBYuXAgAeOWVVzBlyhQMGjQI8Xgcl1xyCaqqqtDU1JTeRjQaxfDhw9Pv+/Xrh2HDhqGgoCBr2Z49e7L2PWnSpDbvP/7445z9/OCDD7BhwwbE4/G05a+0tBSJRAIbN278qqeBYRimUzhJgGGYr5VwOIzTTjsNp512Gm6++Wb87Gc/w5w5c3DyySfj7LPPxlVXXYV///d/R2lpKd566y1cccUVcBwH0WgUgJ7EORMhRM5lSqlu97GhoQHjxo3DokWL2nxWVlbW7e0yDMPkCws0hmEOKqNHj8YLL7yA9957D0op/OEPf4CU2rj/zDPP9Nh+1qxZ0+b90UcfnbPt8ccfjyVLlqC8vByFhYU91geGYZh8YRcnwzBfC1VVVfjBD36AJ598En/729+wefNmPPvss7j99tsxffp0jBgxAq7r4t5778WmTZvwxBNP4P777++x/b/99tu4/fbb8dlnn2H+/Pl49tlncd111+Vse/HFF6Nv376YPn06Vq1ahc2bN+P111/HzJkzsW3bth7rE8MwTHuwBY1hmK+FgoICTJgwAXfddRc2btwI13VRUVGBK6+8Er/97W8RiURw55134ne/+x1mz56N73//+5g3bx5++tOf9sj+b7zxRrz77ru49dZbUVhYiDvvvBPTpk3L2TYajeLNN9/Er3/9a5x77rmor6/HoEGDMGXKFLaoMQzztSCIiA52JxiGYQ4kw4YNw/XXX4/rr7/+YHeFYRgmL9jFyTAMwzAM08tggcYwDMMwDNPLYBcnwzAMwzBML4MtaAzDMAzDML0MFmgMwzAMwzC9DBZoDMMwDMMwvQwWaAzDMAzDML0MFmgMwzAMwzC9DBZoDMMwDMMwvQwWaAzDMAzDML0MFmgMwzAMwzC9jP8P+yb04TXuNzUAAAAASUVORK5CYII=\n"},"metadata":{}}]},{"cell_type":"markdown","source":["## Calculate the corrrelations\n","\n","Now that we have the contigs and their average depth across the samples, we calculate a pairwise correlation between all contigs and all other contigs.\n","\n","We create a matrix of the data"],"metadata":{"id":"E56NrZZAPaIc"}},{"cell_type":"code","source":["correlation_matrix = dfs.T.corr()\n","correlation_matrix"],"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":475},"id":"kl-Hdj9AZS9F","executionInfo":{"status":"ok","timestamp":1730775342144,"user_tz":-660,"elapsed":826,"user":{"displayName":"Rob Edwards","userId":"17780279723170493443"}},"outputId":"c4771afb-a582-47cc-bfd1-2ee98b254a6e"},"execution_count":8,"outputs":[{"output_type":"execute_result","data":{"text/plain":["contig k141_10016 k141_10116 k141_10189 k141_10215 k141_10223 \\\n","contig \n","k141_10016 1.000000 0.996792 0.996441 0.508572 0.979783 \n","k141_10116 0.996792 1.000000 0.999818 0.439789 0.992605 \n","k141_10189 0.996441 0.999818 1.000000 0.441502 0.992971 \n","k141_10215 0.508572 0.439789 0.441502 1.000000 0.333871 \n","k141_10223 0.979783 0.992605 0.992971 0.333871 1.000000 \n","... ... ... ... ... ... \n","k141_9786 0.975736 0.990024 0.990595 0.318277 0.999789 \n","k141_9827 0.950348 0.972032 0.971656 0.216954 0.992220 \n","k141_9878 0.996718 0.999910 0.999982 0.442515 0.992698 \n","k141_993 0.551643 0.483753 0.483989 0.995902 0.377442 \n","k141_9997 0.928814 0.955475 0.955697 0.159266 0.983725 \n","\n","contig k141_10246 k141_1032 k141_10423 k141_10428 k141_10650 ... \\\n","contig ... \n","k141_10016 0.658830 0.986242 0.809457 0.965302 0.979254 ... \n","k141_10116 0.598469 0.996125 0.760683 0.982974 0.992184 ... \n","k141_10189 0.600309 0.995603 0.761247 0.982628 0.992777 ... \n","k141_10215 0.982519 0.359496 0.916842 0.267551 0.334774 ... \n","k141_10223 0.503240 0.998403 0.679663 0.997104 0.999929 ... \n","... ... ... ... ... ... ... \n","k141_9786 0.489031 0.997131 0.666870 0.997652 0.999848 ... \n","k141_9827 0.394236 0.988654 0.586973 0.998634 0.991695 ... \n","k141_9878 0.601123 0.995651 0.762202 0.982458 0.992436 ... \n","k141_993 0.986551 0.406229 0.935704 0.314768 0.377407 ... \n","k141_9997 0.340064 0.976744 0.536821 0.993046 0.983582 ... \n","\n","contig k141_954 k141_9546 k141_9580 k141_9607 k141_9757 k141_9786 \\\n","contig \n","k141_10016 0.989863 0.871763 0.960788 0.964751 0.552240 0.975736 \n","k141_10116 0.975326 0.908177 0.978922 0.940594 0.484368 0.990024 \n","k141_10189 0.974600 0.908885 0.977602 0.939722 0.484583 0.990595 \n","k141_10215 0.621728 0.032094 0.250488 0.711676 0.995781 0.318277 \n","k141_10223 0.941469 0.951854 0.993001 0.892769 0.378057 0.999789 \n","... ... ... ... ... ... ... \n","k141_9786 0.934851 0.957208 0.993212 0.884099 0.361827 1.000000 \n","k141_9827 0.896996 0.979915 0.997981 0.835481 0.265431 0.993662 \n","k141_9878 0.975225 0.908001 0.977704 0.940590 0.486016 0.990231 \n","k141_993 0.662858 0.076033 0.301678 0.749745 0.999999 0.361220 \n","k141_9997 0.866875 0.991159 0.991564 0.798599 0.205664 0.986580 \n","\n","contig k141_9827 k141_9878 k141_993 k141_9997 \n","contig \n","k141_10016 0.950348 0.996718 0.551643 0.928814 \n","k141_10116 0.972032 0.999910 0.483753 0.955475 \n","k141_10189 0.971656 0.999982 0.483989 0.955697 \n","k141_10215 0.216954 0.442515 0.995902 0.159266 \n","k141_10223 0.992220 0.992698 0.377442 0.983725 \n","... ... ... ... ... \n","k141_9786 0.993662 0.990231 0.361220 0.986580 \n","k141_9827 1.000000 0.971407 0.264747 0.997591 \n","k141_9878 0.971407 1.000000 0.485417 0.955167 \n","k141_993 0.264747 0.485417 1.000000 0.205007 \n","k141_9997 0.997591 0.955167 0.205007 1.000000 \n","\n","[268 rows x 268 columns]"],"text/html":["\n","
\n","
\n","\n","\n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n","
contigk141_10016k141_10116k141_10189k141_10215k141_10223k141_10246k141_1032k141_10423k141_10428k141_10650...k141_954k141_9546k141_9580k141_9607k141_9757k141_9786k141_9827k141_9878k141_993k141_9997
contig
k141_100161.0000000.9967920.9964410.5085720.9797830.6588300.9862420.8094570.9653020.979254...0.9898630.8717630.9607880.9647510.5522400.9757360.9503480.9967180.5516430.928814
k141_101160.9967921.0000000.9998180.4397890.9926050.5984690.9961250.7606830.9829740.992184...0.9753260.9081770.9789220.9405940.4843680.9900240.9720320.9999100.4837530.955475
k141_101890.9964410.9998181.0000000.4415020.9929710.6003090.9956030.7612470.9826280.992777...0.9746000.9088850.9776020.9397220.4845830.9905950.9716560.9999820.4839890.955697
k141_102150.5085720.4397890.4415021.0000000.3338710.9825190.3594960.9168420.2675510.334774...0.6217280.0320940.2504880.7116760.9957810.3182770.2169540.4425150.9959020.159266
k141_102230.9797830.9926050.9929710.3338711.0000000.5032400.9984030.6796630.9971040.999929...0.9414690.9518540.9930010.8927690.3780570.9997890.9922200.9926980.3774420.983725
..................................................................
k141_97860.9757360.9900240.9905950.3182770.9997890.4890310.9971310.6668700.9976520.999848...0.9348510.9572080.9932120.8840990.3618271.0000000.9936620.9902310.3612200.986580
k141_98270.9503480.9720320.9716560.2169540.9922200.3942360.9886540.5869730.9986340.991695...0.8969960.9799150.9979810.8354810.2654310.9936621.0000000.9714070.2647470.997591
k141_98780.9967180.9999100.9999820.4425150.9926980.6011230.9956510.7622020.9824580.992436...0.9752250.9080010.9777040.9405900.4860160.9902310.9714071.0000000.4854170.955167
k141_9930.5516430.4837530.4839890.9959020.3774420.9865510.4062290.9357040.3147680.377407...0.6628580.0760330.3016780.7497450.9999990.3612200.2647470.4854171.0000000.205007
k141_99970.9288140.9554750.9556970.1592660.9837250.3400640.9767440.5368210.9930460.983582...0.8668750.9911590.9915640.7985990.2056640.9865800.9975910.9551670.2050071.000000
\n","

268 rows × 268 columns

\n","
\n","
\n","\n","
\n"," \n","\n"," \n","\n"," \n","
\n","\n","\n","
\n"," \n","\n","\n","\n"," \n","
\n","\n","
\n"," \n"," \n"," \n","
\n","\n","
\n","
\n"],"application/vnd.google.colaboratory.intrinsic+json":{"type":"dataframe","variable_name":"correlation_matrix"}},"metadata":{},"execution_count":8}]},{"cell_type":"markdown","source":["## Find the highest correlations\n","\n","We filter _all_ the correlations to find the highest correlations. I chose the 0.99 cutoff somewhat at random, and adjusting the cutoff may adjust the number of contigs in each correlation.\n","\n","We just print the first ten correlations so we can see what we have!"],"metadata":{"id":"B27KSgRcPsyH"}},{"cell_type":"code","source":["threshold = 0.99\n","high_corr = []\n","for i in range(len(correlation_matrix)):\n"," for j in range(i + 1, len(correlation_matrix)): # Avoid duplicate pairs\n"," if abs(correlation_matrix.iloc[i, j]) > threshold:\n"," high_corr.append((correlation_matrix.index[i], correlation_matrix.index[j], correlation_matrix.iloc[i, j]))\n","high_corr[0:10]"],"metadata":{"id":"bRXIGgi7aiEF","executionInfo":{"status":"ok","timestamp":1730775350827,"user_tz":-660,"elapsed":2041,"user":{"displayName":"Rob Edwards","userId":"17780279723170493443"}},"colab":{"base_uri":"https://localhost:8080/"},"outputId":"c3ccd389-d0fc-45fd-b31f-4d3317e5293b"},"execution_count":9,"outputs":[{"output_type":"execute_result","data":{"text/plain":["[('k141_10016', 'k141_10116', 0.996792125391458),\n"," ('k141_10016', 'k141_10189', 0.9964405384854441),\n"," ('k141_10016', 'k141_10800', 0.9972954723833105),\n"," ('k141_10016', 'k141_10972', 0.9944781039111493),\n"," ('k141_10016', 'k141_1109', 0.9913296965337903),\n"," ('k141_10016', 'k141_11159', 0.9924435053352318),\n"," ('k141_10016', 'k141_11254', 0.9902469276432863),\n"," ('k141_10016', 'k141_11790', 0.9926073160612265),\n"," ('k141_10016', 'k141_12363', 0.9912386345429348),\n"," ('k141_10016', 'k141_13277', 0.9959828223878939)]"]},"metadata":{},"execution_count":9}]},{"cell_type":"markdown","source":["### Find the longest contigs\n","\n","We find the two longest contigs that are in our correlation matrix so we can plot their data"],"metadata":{"id":"Q7HC5-vgVLUo"}},{"cell_type":"code","source":["hc = set()\n","for i in high_corr:\n"," hc.add(i[0])\n","\n","seqlengths[seqlengths.index.isin(hc)].sort_values(by='length')"],"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":455},"id":"7bH0b66FQKan","executionInfo":{"status":"ok","timestamp":1730776615201,"user_tz":-660,"elapsed":638,"user":{"displayName":"Rob Edwards","userId":"17780279723170493443"}},"outputId":"f8fdce25-767b-4b25-cc5f-49d334453fb0"},"execution_count":25,"outputs":[{"output_type":"execute_result","data":{"text/plain":[" length\n","contig \n","k141_9055 305\n","k141_3728 307\n","k141_3084 310\n","k141_1386 324\n","k141_8665 325\n","... ...\n","k141_7934 7537\n","k141_6589 8079\n","k141_7068 8304\n","k141_2928 8804\n","k141_12474 12648\n","\n","[250 rows x 1 columns]"],"text/html":["\n","
\n","
\n","\n","\n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n","
length
contig
k141_9055305
k141_3728307
k141_3084310
k141_1386324
k141_8665325
......
k141_79347537
k141_65898079
k141_70688304
k141_29288804
k141_1247412648
\n","

250 rows × 1 columns

\n","
\n","
\n","\n","
\n"," \n","\n"," \n","\n"," \n","
\n","\n","\n","
\n"," \n","\n","\n","\n"," \n","
\n","\n","
\n","
\n"],"application/vnd.google.colaboratory.intrinsic+json":{"type":"dataframe","summary":"{\n \"name\": \"seqlengths[seqlengths\",\n \"rows\": 250,\n \"fields\": [\n {\n \"column\": \"contig\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 250,\n \"samples\": [\n \"k141_4334\",\n \"k141_116\",\n \"k141_13277\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"length\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1857,\n \"min\": 305,\n \"max\": 12648,\n \"num_unique_values\": 246,\n \"samples\": [\n 545,\n 328,\n 3031\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}"}},"metadata":{},"execution_count":25}]},{"cell_type":"markdown","source":["Here, we are going to find the two contigs in hc that have the lowest correlations between them - these should be diverse genomes!"],"metadata":{"id":"5LELPTvqYDsv"}},{"cell_type":"code","source":["subset_corr = correlation_matrix.loc['k141_12474', list(hc)]\n","subset_corr.sort_values(ascending=True)"],"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":489},"id":"5lCaHB1vYByS","executionInfo":{"status":"ok","timestamp":1730777620559,"user_tz":-660,"elapsed":511,"user":{"displayName":"Rob Edwards","userId":"17780279723170493443"}},"outputId":"19b9c7d0-19de-463f-ec52-8cb7259f129d"},"execution_count":50,"outputs":[{"output_type":"execute_result","data":{"text/plain":["contig\n","k141_13159 0.055370\n","k141_13759 0.093904\n","k141_3084 0.103676\n","k141_380 0.131021\n","k141_198 0.131109\n"," ... \n","k141_10999 0.999828\n","k141_7934 0.999917\n","k141_10428 0.999921\n","k141_11620 0.999973\n","k141_12474 1.000000\n","Name: k141_12474, Length: 250, dtype: float64"],"text/html":["
\n","\n","\n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n","
k141_12474
contig
k141_131590.055370
k141_137590.093904
k141_30840.103676
k141_3800.131021
k141_1980.131109
......
k141_109990.999828
k141_79340.999917
k141_104280.999921
k141_116200.999973
k141_124741.000000
\n","

250 rows × 1 columns

\n","

"]},"metadata":{},"execution_count":50}]},{"cell_type":"markdown","source":["Now that we have two long contigs, lets get lists of all the things they are correlated"],"metadata":{"id":"DyEssMxcVtSr"}},{"cell_type":"code","source":["related_contigs = ['k141_12474']\n","for i in high_corr:\n"," if i[0] == related_contigs[0]:\n"," related_contigs.append(i[1])\n","\n","related_contigs2 = ['k141_13159']\n","for i in high_corr:\n"," if i[0] == related_contigs2[0]:\n"," related_contigs2.append(i[1])\n"],"metadata":{"id":"3x7mtVcxawXD","executionInfo":{"status":"ok","timestamp":1730777633671,"user_tz":-660,"elapsed":608,"user":{"displayName":"Rob Edwards","userId":"17780279723170493443"}}},"execution_count":51,"outputs":[]},{"cell_type":"markdown","source":["Now, we plot the data just like we did before. Here, I have only ploted the lines, but you can use `hue` to plot the individual lines in the data"],"metadata":{"id":"OLyD8l32V3H_"}},{"cell_type":"code","source":["dfsubset1 = df[df.index.isin(related_contigs)]\n","dfsubset2 = df[df.index.isin(related_contigs2)]\n","melted_df1 = dfsubset1.reset_index().melt(id_vars='contig', var_name='Sample', value_name='Depth')\n","melted_df2 = dfsubset2.reset_index().melt(id_vars='contig', var_name='Sample', value_name='Depth')"],"metadata":{"id":"uY66ChwLcqMU","executionInfo":{"status":"ok","timestamp":1730777634360,"user_tz":-660,"elapsed":4,"user":{"displayName":"Rob Edwards","userId":"17780279723170493443"}}},"execution_count":52,"outputs":[]},{"cell_type":"code","source":["fig, ax = plt.subplots(figsize=(8, 6))\n","sns.lineplot(data=melted_df1, x='Sample', y='Depth', c='b', estimator=None, units='contig', alpha=0.5, legend=False, ax=ax)\n","sns.lineplot(data=melted_df2, x='Sample', y='Depth', c='r', estimator=None, units='contig', alpha=0.5, legend=False, ax=ax)\n"],"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":560},"id":"jVc59n_ac6oj","executionInfo":{"status":"ok","timestamp":1730777635883,"user_tz":-660,"elapsed":919,"user":{"displayName":"Rob Edwards","userId":"17780279723170493443"}},"outputId":"eb27d563-3d03-46b6-86b0-16dc20d722fe"},"execution_count":53,"outputs":[{"output_type":"execute_result","data":{"text/plain":[""]},"metadata":{},"execution_count":53},{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAAAtsAAAINCAYAAADvF7OaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAADHm0lEQVR4nOy9d5Qc13Xn/+08PTliBjmDIAiCIEBEIhAUJOYISpZkRVOyAk1bou1jc3/2ar179lBe7VqyvVYgFai1TUumTImmZImiGUBkRoAkSAAEiDDAYAIwOfX0dNfvj8s79bqmehJmprp7vp9zarqnQ/Wr6uqq77vv++71WZZlgRBCCCGEEDLu+L1uACGEEEIIIbkKxTYhhBBCCCETBMU2IYQQQgghEwTFNiGEEEIIIRMExTYhhBBCCCETBMU2IYQQQgghEwTFNiGEEEIIIRMExTYhhBBCCCETRNDrBkw0yWQSdXV1KCoqgs/n87o5hBBCCCHEgWVZ6OjowIwZM+D351YsOOfFdl1dHWbPnu11MwghhBBCyDDU1tZi1qxZXjdjXMl5sV1UVARAvrzi4mKPW0MIIYQQQpy0t7dj9uzZA7otl8h5sa3WkeLiYoptQgghhJAMJhctv7lliiGEEEIIISSDoNgmhBBCCCFkgqDYJoQQQgghZIKg2CaEEEIIIWSCoNgmhBBCCCFkgvBUbP+3//bf4PP5UpalS5cOPN/b24v77rsPFRUVKCwsxI4dO9DQ0OBhiwkhhBBCCBk5nke2r7jiCpw/f35g2b1798BzX/3qV/HUU0/h8ccfx86dO1FXV4e7777bw9YSQgghhBAycjzPsx0MBlFTUzPo8ba2NvzgBz/AY489huuvvx4A8KMf/QiXX3459u/fj/Xr1092UwkhhBBCCBkVnke23333XcyYMQMLFizA7/7u7+LMmTMAgFdffRXxeBzbt28feO3SpUsxZ84c7Nu3L+36YrEY2tvbUxZCCCGEEEK8wFOxvW7dOjz66KP4zW9+g+985zs4efIkNm/ejI6ODtTX1yMcDqO0tDTlPdXV1aivr0+7zoceegglJSUDy+zZsyd4KwghhBBCCHHHUxvJTTfdNHB/xYoVWLduHebOnYt//dd/RTQaHdM6H3zwQTzwwAMD/7e3t1NwE0IIIYQQT/DcRmJSWlqKJUuW4Pjx46ipqUFfXx9aW1tTXtPQ0ODq8VYikQiKi4tTFkIIIYQQQrwgo8R2Z2cnTpw4genTp2P16tUIhUJ49tlnB54/evQozpw5gw0bNnjYSkIIIYQQQkaGpzaSP/mTP8Ftt92GuXPnoq6uDl/72tcQCATwsY99DCUlJbj33nvxwAMPoLy8HMXFxbj//vuxYcMGZiIhhBBCCCFZgadi++zZs/jYxz6GixcvoqqqCps2bcL+/ftRVVUFAPjmN78Jv9+PHTt2IBaL4YYbbsC3v/1tL5tMCCGEEELIiPFZlmV53YiJpL29HSUlJWhra6N/mxBCCCEkA8llvZZRnm1CCCEkU2lqArq7vW4FISTb8LyCJCGEEJLJxOPAb38LvPwyUFEBfPnLQCDgdasIIdkCI9uEEEJIGpqagO9/X4Q2AFy8CBw65G2bCCHZBcU2IYQQ4sCygNdfBx5+GGhoAAoKgBUr5Lldu4BEwtv2EUKyB9pICCGEEINYDPjlL4E335T/Fy4E7roLCIeBEyeAlhZ5buVKT5tJCMkSGNkmhBBC3qeuDvje90RM+/3A9u3AJz4BFBaK2N64UV734otAMultWwkh2QHFNiGEkCmPZQH79gE/+AHQ3AyUlgKf/SywaRPg89mvW7MGyM+X12jkmxBChoJimxBCyJSmqwt47DHg6afFi71sGfDFLwKzZw9+bTgMbNgg9xndJoSMBIptQgghU5ZTp4Dvfhd4910gGARuvRX48IeBvLz071m7FohGJTPJ4cOT1lRCSJZCsU0IIWTKkUwCzz8P/PjHQEcHUFUFfP7zwDXXpNpG3IhEGN0mhIwcim1CCCFTirY2Edk7d4pXe9UqEdrV1SNfx9q1Ev1uagLeeWfi2koIyX4otgkhhEwZjh4V28jp0xKh3rEDuP128WKPhrw8YP16ua+inRBC3GCebUIIITlPfz/wzDPAgQPy/4wZwD33AOXlY1/nunWSwaSxUaLby5aNT1sJIbkFI9uEEEJymosXJaWfCu2NG4F77700oQ3IJElGtwkhw8HINiGEkJzl0CHgV78C+vokP/ZddwGLF4/f+tevB/bvl5LuR48CS5eO37oJIbkBI9uEEEJyjr4+4Oc/l6WvD5g3T3Jnj6fQBiS6vXat3Gd0mxDiBiPbhBBCcor6euDxx8U+4vMB110HbN4s5dcngg0bxKJy/jxw7Bhw2WUT8zmEkOyEkW1CCCE5gWUBL70EPPKICO3iYuAznwG2bp04oQ2IPWXNGrnP6DYhxAkj24QQQrKenh7gySeBI0fk/8suA+64Q4TwZLBxowj9ujrg+PHxt6sQQrIXRrYJIYRkNWfOSO7sI0eAQAC46Sbgox+dPKENAAUFjG4TQtxhZJsQQkhWkkwCu3dL2XXLAioqJHf29OnetEej22fPAu+9Byxc6E07CCGZBcU2IYSQrKOjA3jiCeDkSfn/qquAm2+WqpBeUVgIXHONpAJ84QVgwQKZoEkImdpQbBNCCMkq3n1XUvp1d0uZ9VtuEbGdCVx7LfDKK0BtrXQEFizwukWEEK+h2CaEEJIVJBLAs88Ce/fK/zU1YhuprPS2XSZFRcDq1ZIKcOdOim1CCMU2IYSQLKClBfjZz4Bz5+T/deuAD34QCGbgVUyj26dPA6dOSUEdQsjUJQNPU4QQQojNW28BTz0FxGJSsfGOOzK7LHpxMbBqFfDyyxLdptgmZGpDsU0IISQjiceBX/8aeO01+X/OHGDHDqCkxNt2jYRNm6TdJ09KhHvuXK9bRAjxCubZJoQQknE0NAAPPyyC1eeTKpCf+Ux2CG1A2rlypdzfudPTphBCPIaRbUIIIRmDZQGvvgr85jdAf79MOLz7bmD+fK9bNno2bwZef11ybtfWArNne90iQogXMLJNCCEkI+jtBR5/HPjlL0VoL14MfPGL2Sm0AaC0lNFtQggj24QQQjKAs2cl20hrK+D3A9u3Axs2ZH9RmM2bgYMHgePHJZPKzJlet4gQMtkwsk0IIcQzLAvYswf44Q9FaJeVAffeK6XPs11oA7I9K1bIfUa3CZmaMLJNCCHEEzo7pRLkiRPy//LlwK23Anl53rZrvNm8GTh0CDh2DKirA2bM8LpFhJDJhJFtQgghk8577wHf/a4I7VAIuP12SeuXa0IbACoqgCuvlPuMbhMy9WBkmxBCyKSRSAAvvADs3i0WkmnTgA9/GKiq8rplE8uWLcCbbwJHjwLnzwPTp3vdIkLIZMHINiGEkEmhtRV49FFg1y4R2tdcA3z+87kvtAGgslJsMgDw4ovetoUQMrkwsk0IIWTCeecd4MknJb1fXh5w223AFVd43arJZcsWKT3/zjtStKe62usWEUImA0a2CSGETBjxOPCrXwE//akI7VmzgC98YeoJbUAi+MuWyX16twmZOjCyTQghZEJoapLc2Q0N8v+mTcC2bUAg4G27vGTLFuDwYeDtt4HGRvGsE0JyG0a2CSGEjCuWJWXKH35YhHZBAfDJT0qhmqkstAGxjmh0m95tQqYGFNuEEELGjVgMeOIJ8WfH48CCBcCXvgQsXOh1yzKHLVvk9vBhif4TQnIbim1CCCHjQl0d8L3vSYo7Lbn+yU8ChYVetyyzqKkBli6VEYBdu7xuDSFkoqHYJoQQcklYFrBvH/CDHwDNzUBpKfDZz4pHOxdKrk8EW7fK7ZtvAhcvetsWQsjEQrFNCCFkzHR3A//yL8DTT0vBmssvl2wjs2d73bLMZvp0YMkS6ajQu01IbkOxTQghZEycOgV85zvAsWNAMAjccgvwkY8A0ajXLcsOzOh2c7O3bSGETBwU24QQQkZFMgk8/zzw4x8DHR1SHfHznwfWrKFtZDTMnAksXiz7k95tQnIXim1CCCEjpr1dRPbOnWKBuPpq4Pd/n9UQx4pGtw8dAlpavG0LIWRioNgmhBAyIo4eFdvI6dNAJALs2AHccQcQDnvdsuxl1ixJi5hMArt3e90aQshEQLFNCCFkSPr7gd/8RiZC9vQAM2bIJMgrr/S6ZbmBRrdffx1obfW0KYSQCYBimxBCSFouXpSUfvv3y/8bNgD33guUl3vbrlxizhxg/nxGtwnJVSi2CSGEuPLGG1Kk5vx5ID8f+PjHgRtuYMn1ieC66+T29deBtjZPm0IIGWcotgkhhKTQ1wf84hdSdr2vD5g3D/jiFyUvNJkY5s6V/ZxIAHv2eN0aQsh4EvS6AYQQQjKH+nrg8cfFPuLzScR182Ypv04mlq1bJXf5q69K9c3iYq9bRAgZD3j6JIQQAssCXnoJ+P73RWgXFwOf+YwIQArtyWHePPFvM7pNSG7BUyghhExxenqAn/4U+I//kMwjl10mtpG5c71u2dTC57Mzk7z6qhQMIoRkPxTbhBAyhTlzBvjud4EjR2Ti4003AR/9qEyIJJPPggXA7NnS6dm71+vWEELGA4ptQgiZgiSTwIsvAo8+KtkvKiqAz30OWLeOJde9xIxuv/IK0NnpbXsIIZcOxTYhhEwxOjqAf/xH4LnnRHSvWCEl16dP97plBJCKkjNnAvE4sG+f160hhFwqFNuEEDKFePddsY2cPCll1u+6C7j7bim/TjIDM7r90ktAV5e37SGEXBpM/UcIIVOARAJ49lnbB1xTA9xzD1BZ6W27iDuLFwMzZgB1dRLd3r7d6xYRQsYKI9uEEJLjtLQAP/yhLbTXrhV/NoV25uKMbnd3e9seQsjYYWSbEEJymLfeAp56CojFgGgUuOMOYOlSr1tFRsKSJTICUV8P7N8PXH+91y0ihIwFRrYJISQHicdFZP/sZyK058yR3NkU2tmDGd0+cEDyoRNCsg9GtgkhJMdobJSS601NItg2b5ay66wEmX0sXQpUVwMNDSK4r7vO6xYRQkYLT72EEJIjWJZUHnz4YRHahYXApz4l9gMK7ezE5wO2bJH7+/cDvb3etocQMnoY2SaEkBygt1dsI4cPy/+LFwN33gkUFHjaLDIOLFsGVFVJB+rAAdtaQgjJDhjrIISQLOfsWcmdffiwRLA/9CHg4x+n0M4VTO/2/v3iwSeEZA+MbBNCSJZiWZLO79lnpRJkWZnkzp450+uWkfFm2TJJ1XjhgqQC3LzZ6xYRQkYKI9uEEJKFdHYC//RPwDPPiNBevhz4whcotHMVv9/2bu/dy+g2IdkExTYhhGQZ770ntpETJ4BQCLj9dmDHDiAvz+uWkYlk+XKgokJSAL78stetIYSMFIptQgjJErTk+j/+o0S2p00DPv95YNUq8fWS3Mbvt+0je/cCfX3etocQMjIotgkhJAtobQUefRTYtUu82tdcI0J72jSvW0YmkxUrxJvf3Q288orXrSGEjASKbUIIyXDeeUdsI7W1QCQCfPjDwK23ioWETC1M7/aePVIplBCS2VBsE0JIhtLfD/zqV8BPfyp5tGfNkpLrV1zhdcuIl6xYAZSWAl1dUsSIEJLZUGwTQkgGcuEC8Mgj9kS4TZuAz35WLARkahMI2N7t3bsZ3SYk08kYsf31r38dPp8PX/nKVwYe6+3txX333YeKigoUFhZix44daGho8K6RhBAywVgW8PrrwPe+BzQ0SGGaT3wC2L5dRBYhALByJVBSIhNlX3vN69YQQoYiI8T2yy+/jO9973tYsWJFyuNf/epX8dRTT+Hxxx/Hzp07UVdXh7vvvtujVhJCyMQSiwFPPAE8+aREKxcsAL70JWDRIq9bRjINZ3S7v9/b9hBC0uO52O7s7MTv/u7v4pFHHkGZMT7a1taGH/zgB/ibv/kbXH/99Vi9ejV+9KMfYe/evdi/f7+HLSaEkPGnrk6i2W++KZPgPvAB4JOfBAoLvW4ZyVRWrgSKi4GODhkNIYRkJp6L7fvuuw+33HILtm/fnvL4q6++ing8nvL40qVLMWfOHOzbty/t+mKxGNrb21MWQgjJVCwL2L8f+MEPgOZmsQZ89rMStWTubDIUwaB4+QFJCcnoNiGZSdDLD//JT36C1157DS+7lMKqr69HOBxGaWlpyuPV1dWor69Pu86HHnoIf/VXfzXeTSWEkHGnuxv4xS+AY8fk/8svl2qQ0ainzSJZxKpVIrTb24GDByX/OiEks/Assl1bW4s/+qM/wj//8z8jbxxrDD/44INoa2sbWGpra8dt3YQQMl6cOgV85zsitINB4JZbgI98hEKbjI5gELj2Wrm/a5dUGSWEZBaeie1XX30VjY2NWLVqFYLBIILBIHbu3Im/+7u/QzAYRHV1Nfr6+tDa2pryvoaGBtTU1KRdbyQSQXFxccpCCCGZQjIJvPAC8OMfi9e2slIqQa5ZQ9sIGRurV4u3v60NOHTI69YQQpx4ZiP5wAc+gDfffDPlsc9+9rNYunQp/uzP/gyzZ89GKBTCs88+ix07dgAAjh49ijNnzmDDhg1eNJkQQi6J9nbg3/4NOH1a/r/6auCmm4Bw2Nt2kewmFJLo9tNPS3T7qquYJpKQTMIzsV1UVITly5enPFZQUICKioqBx++991488MADKC8vR3FxMe6//35s2LAB69ev96LJhBAyZo4eFX92T4+I69tuA6680utWkVxh9WpJAdjSIhltVq70ukWEEMXTCZLD8c1vfhN+vx87duxALBbDDTfcgG9/+9teN4sQQkZMfz/wn/8pGUcAYMYM4J57gPJyb9tFcotwGNi4EXjmGeDFF6Wku9/zfGOEEADwWZZled2IiaS9vR0lJSVoa2ujf5sQMqlcvAj87GfA+fPy/4YNrARJJo6+PuBb35IsN3fdJXYSQrKFXNZr7PcSQsgE8MYbUqTm/HkgPx/4+MeBG26g0CYTRzgsHTpAotvJpLftIYQIFNuEEDKO9PWJN/uJJ+T+vHnAF78ILFnidcvIVGDtWkkfefEicPiw160hhAAU24QQMm7U1wMPPyzFRXw+YNs24FOfkpLahEwGkQij24RkGhk9QZIQQrIBywJefhn47W9lQmRxMbBjBzB3rtctI1ORtWuBvXuBpibgnXeAK67wukWETG0Y2SaEkEugpwf46U+B//gPEdqXXSa2EQpt4hV5eYBmyN25UzqDhBDvoNgmhJAxcuYM8N3vAkeOyMTHG28EPvpRmRBJiJesWyeWksZGiW4TQryDYpsQQkZJMil+2EcflRLZ5eXAvfdKNJEl10kmEI0yuk1IpkDPNiGEjIKODuDnPwfee0/+X7ECuOUWiSISkkmsXw/s2wc0NEgF06VLvW4RIVMTRrYJIWSEHD8utpH33gNCIeDOO6V4CIU2yUSiUbGTAIxuE+IljGwTQsgwJBLAc88Be/bI/zU1UnK9stLbdhEyHBs2AAcOSHGlY8dkAi8hZHJhZJsQQoagpQX44Q9tob12LfC5z1Fok+wgPx9Ys0buM7pNiDcwsk0IIWk4fBj4938HYjEZkr/jDvpeSfaxcSPw0ktAXZ1YoRYv9rpFhEwtGNkmhBAH8Tjw1FPA44+L0J4zR3JnU2iTbKSggNFtQryEkW1CCDFobBSR3dQkafw2bwauuw7wMzRBshiNbp89KxN8Fy70ukWETB0otgkhBBLte+014Ne/lkqQhYXA3XcDCxZ43TJCLp3CQuCaa4D9+4EXXpDjmjnhCZkcKLYJIVOe3l6xjRw+LP8vWiQp/QoKvG0XIePJtdcCr7wC1NYCJ0+yI0nIZEGxTQiZ0pw9C/zsZ0Brq1hFtm+XdGmM+pFco6gIWL1aUgHu3EmxTchkQbFNCJmSWBawdy/w7LNSfr2sTHJnz5zpdcsImTg0un36NHDqFDBvntctIiT3odgmhEw5urqk5Prx4/L/FVcAt90G5OV52y5CJpriYmDVKuDllyW6TbFNyMRDsU0ImVK89x7wxBNAZ6eUXL/pJuDqq2kbIVOHTZtkMvDJkxLhnjvX6xYRktswmRUhZEqQTIpl5B//UYT2tGnA5z8vUT4KbTKVKCkBVq6U+zt3etoUQqYEjGwTQnKetjaZBFlbK/+vXg3ceKNEtgmZimzeDLz+uoz01NYCs2d73SJCchdGtgkhOc077wDf+Y4IikgE+PCHxZ9NoU2mMqWljG4TMlkwsk0IyUn6+4Gnn5aJYIBkGbnnHsk6QgiR6PbBgzJR+OxZYNYsr1tESG7CyDYhJOe4cAF45BFbaF97LfB7v0ehTYhJWRmwYoXcf/FFb9tCSC7DyDYhJGewLODQIeBXvwLicakAedddUhGSEDKYzZvlN3PsGFBXB8yY4XWLCMk9GNkmhOQEsZjkzv7FL0RoL1gAfPGLFNqEDEVFBXDllXKf3m1CJgZGtgkhWU9dnWQbaW6Wkuvbtol1xM9wAiHDsmUL8OabwNGjwPnzwPTpXreIkNyClyJCSNZiWcD+/cAPfiBCu6QE+OxnZWicQpuQkVFZCSxfLvfp3SZk/GFkmxCSlXR3i2Xk2DH5//LLgdtvB6JRT5tFSFayZQvw1luSKrOhAaiu9rpFhOQOjP0QQrKOU6ckd/axY0AwCNxyC/CRj1BoEzJWqqqAZcvkPr3bhIwvjGwTQrKGZFKGuXfuFAtJZaXkzq6p8bplhGQ/W7YAhw8Db78NNDYC06Z53SJCcgNGtgkhWUF7O/DjHwMvvCBC++qrgd//fQptQsaL6mo7uk3vNiHjB8U2ISTjOXYM+O53gdOngXAYuPtu4I475D4hZPzYskVuDx8Gmpq8bQshuQLFNiEkY+nvB37zG+Cxx2RC5PTpwBe+YFe9I4SMLzU1wNKlMnq0a5fXrSEkN6DYJoRkJBcvSkq//fvl/w0bgHvvlSIchJCJY+tWuX3zTfkdEkIuDYptQkjG8cYbwPe+JwU28vOBj38cuOEGyTxCCJlYpk8HliyR6Da924RcOhTbhJCMoa9Pcmc/8YTcnzdPSq4vWeJ1ywiZWpjR7eZmb9tCSLZDsU0IyQjq64GHHwYOHgR8PuC664BPfQooLva6ZYRMPWbOBBYvlnSb9G4TcmlQbBNCPMWygJdfBr7/feDCBRHXn/60iG2WXCfEOzS6fegQ0NLibVsIyWZ4KSOEeEZPD/Cv/wr86leSeWTJErGNzJvndcsIIbNmAQsXSnR7926vW0NI9kKxTQjxhDNnJHf2O+8AgQBw443Axz4mEyIJIZmBRrdffx1obfW0KYRkLRTbhJBJRT2gjz4KtLUB5eWS0m/9evFqE0IyhzlzgPnzGd0m5FKg2CaETBodHcA//RPw7LNy8V6xQorUzJjhdcsIIem47jq5ff116SATQkYHxTYhZFI4flxsI++9B4RCwJ13AnfdBUQiXreMEDIUc+fKPIpEAtizx+vWEJJ9sEQEIWRCSSSA556zL9LV1cCHPwxUVnrbLkLIyNm6FTh1Cnj1VWDTJqbkJGQ0MLJNCJkwWlqAH/3IFtpr1wKf/zyFNiHZxrx54t9mdJuQ0UOxTQiZEA4fFtvI2bNAXh7wO78D3HwzS64Tko34fHZmkldflfkXhJCRQbFNCBlX4nHgqaeAxx8HYjFg9mzJnX355V63jBByKSxYIL/n/n5g716vW0NI9kCxTQgZNxobgUcekciXzwds2QJ89rNAaanXLSOEXCpmdPuVV4DOTm/bQ0i2wAFdQsglY1nAa68Bv/mNRLYLC4G775ZIGCEkd1i4EJg5Ezh3Dti3D/jgB71uESGZDyPbhJBLorcX+NnPxDoSjwOLFgFf+hKFNiG5iBndfukloKvL2/YQkg0wsk0IGTPnzonQbmkB/H7gAx8ANm5kJUhCcpnFi6UQVV2dRLe3b/e6RYRkNoxsE0LGxIULUnK9pUU82b/3e8C111JoE5LrOKPb3d3etoeQTIdimxAyapJJ4MknxTYyb55kG5k1y+tWEUImiyVLgJoaoK8P2L/f69YQktlQbBNCRs3+/UBtrZRav+suyaNNCJk6mNHtAweAnh5v20NIJkOxTQgZFRcuSPl1ALjhBqCkxNv2EEK8YelSoLpa8ukzuk1Ieii2CSEjRu0j/f2SdeTqq71uESHEKzSXPiDR7d5eb9tDSKZCsU0IGTGmfeS22zgZkpCpzrJlQFWVCO0DB7xuDSGZCcU2IWRE0D5CCHFierf37xdLCSEkFYptQsiw0D5CCEnHsmVAZaVMknzpJa9bQ0jmQbFNCBkW2kcIIenw+23v9t69jG4T4oRimxAyJLSPEEKGY/lyoKJCotsvv+x1awjJLCi2CSFpoX2EEDIS/H5g82a5v3evFLshhAgU24SQtJj2kdtvp32EEJKeFSuAsjIp3/7KK163hpDMgWKbEOKKaR+58UaguNjb9hBCMhvTu71nDxCPe9seQjIFim1CyCCSSeAXv7DtIytXet0iQkg2sGIFUFoKdHUBr77qdWsIyQwotgkhg9i/Hzh7lvYRQsjoCARs7/bu3YxuEwJQbBNCHNA+Qgi5FFaulKxFnZ3Aa6953RpCvIdimxAyAO0jhJBLxRnd7u/3tj2EeA3FNiFkgH37aB8hhFw6K1fKqFhHB/D66163hhBvodgmhAAAmpqA55+X+7SPEEIuhWAQ2LRJ7u/axeg2mdpQbBNCUorXLF5M+wgh5NJZtQooKgLa24GDB71uDSHeQbFNCBmwj+TlAbfdRvsIIeTSCQaBa6+V+7t2AYmEt+0hxCs8Fdvf+c53sGLFChQXF6O4uBgbNmzAr3/964Hne3t7cd9996GiogKFhYXYsWMHGhoaPGwxIbmHaR+54QbaRwgh48fq1UBhIdDWBhw65HVrCPEGT8X2rFmz8PWvfx2vvvoqXnnlFVx//fW44447cPjwYQDAV7/6VTz11FN4/PHHsXPnTtTV1eHuu+/2ssmE5BS0jxBCJpJQiNFtQnyWZVleN8KkvLwc3/jGN3DPPfegqqoKjz32GO655x4AwJEjR3D55Zdj3759WL9+/YjW197ejpKSErS1taGYITtCUtizB3jmGbGPfPnLjGoTQsafvj7gb/9WqkreeSc79cSdXNZrGePZTiQS+MlPfoKuri5s2LABr776KuLxOLZv3z7wmqVLl2LOnDnYt2+fhy0lJDegfYQQMhmEw8DGjXL/xRdlRI2QqYTnYvvNN99EYWEhIpEIvvjFL+LnP/85li1bhvr6eoTDYZSWlqa8vrq6GvX19WnXF4vF0N7enrIQQlKhfYQQMpmsWQPk5wPNzcCbb3rdGkImF8/F9mWXXYaDBw/iwIED+NKXvoRPf/rTePvtt8e8voceegglJSUDy+zZs8extYTkBsw+QgiZTMJhYMMGuc/oNplqeC62w+EwFi1ahNWrV+Ohhx7CVVddhb/9279FTU0N+vr60NramvL6hoYG1NTUpF3fgw8+iLa2toGltrZ2greAkOyC9hFCiBesXQtEo8DFi8D7eRAImRJ4LradJJNJxGIxrF69GqFQCM8+++zAc0ePHsWZM2ewQbvHLkQikYFUgroQQoRkEvjFL2gfIYRMPpEIo9tkahL08sMffPBB3HTTTZgzZw46Ojrw2GOP4YUXXsDTTz+NkpIS3HvvvXjggQdQXl6O4uJi3H///diwYcOIM5EQQlLZtw84d472EUKIN6xdC+zdKyNs77wDXHGF1y0iZOLxVGw3NjbiU5/6FM6fP4+SkhKsWLECTz/9ND74wQ8CAL75zW/C7/djx44diMViuOGGG/Dtb3/byyYTkrWY9pEbb6R9hBAy+eTlAevXAy+8AOzcCSxbxk4/yX0yLs/2eJPLeRsJGSnJJPCDH0hUe/Fi4OMf5wWOEOINPT3At74FxGLARz4igpuQXNZrGefZJoSMP3v30j5CCMkMolGJbgMS3c7tkB8hFNuE5Dy0jxBCMo316yUdYEMDcPSo160hZGKh2CYkh9HsI4kEsGQJcNVVXreIEEIkur1undxndJvkOhTbhOQwpn3k1ltpHyGEZA4bNkh0+/x54Ngxr1tDyMRBsU1IjkL7CCEkk8nPlzLuAKPbJLeh2CYkB6F9hBCSDWzcCIRCQF0dcPy4160hZGKg2CYkB6F9hBCSDRQUMLpNch+KbUJyDNpHCCHZxMaNQDAInD0LvPee160hZPyh2CYkh6B9hBCSbRQWAtdcI/dfeIHRbZJ7UGwTkkOweA0hJBu59lqJbtfWAidPet0aQsYXim1CcoTGxlT7SFGRt+0hhJCRUlQErFol93fu9LYthIw3FNuE5ADJJPDkk7SPEEKyl02bgEAAOH0aOHXK69YQMn5QbBOSA9A+QgjJdoqLGd0muQnFNiFZjmkfuekm2kcIIdmLRrdPnpQINyG5AMU2IVmMM/vIihVet4gQQsZOSQmwcqXcZ3Sb5AoU24RkMXv2SOU12kcIIbnC5s2A3y85t2trvW4NIZcOxTYhWUpjo+SkBWgfIYTkDqWljG6T3IJim5AshPYRQkguo9Ht48elsiQh2QzFNiFZCO0jhJBcpqzMDiIwuk2yHYptQrIM2kcIIVOBzZslkPDuuxJcICRbodgmJIugfYQQMlWoqACuvFLuM7pNshmKbUKyCNpHCCFTiS1b5Dx39Chw/rzXrSFkbFBsE5Il0D5CCJlqVFYCy5fL/Rdf9LYthIyV4FjfmEwmcfz4cTQ2NiKZTKY8t2XLlktuGCHExrSPXHYZ7SOEkKnDli3AW28B77wDNDQA1dVet4iQ0TEmsb1//358/OMfx+nTp2FZVspzPp8PiURiXBpHCBFM+8itt9I+QgiZOlRVAcuWAYcPi3f7Ix/xukWEjI4x2Ui++MUv4pprrsFbb72F5uZmtLS0DCzNzc3j3UZCpjS0jxBCpjo6YP7223JOJCSbGFNk+91338XPfvYzLFq0aLzbQwgxoH2EEELEOrJsmYjtF18E7rnH6xYRMnLGFNlet24djh8/Pt5tIYQ4UPtINEr7CCFkaqPR7cOHgaYmb9tCyGgYcWT7jTfeGLh///3344//+I9RX1+PK6+8EqFQKOW1Kxh+I+SSoX2EEEJsamqApUuBI0eAXbuAu+/2ukWEjIwRi+2VK1fC5/OlTIj8vd/7vYH7+hwnSBJy6SQSqfYRLexACCFTma1bRWy/+abcr6jwukWEDM+IxfbJkycnsh2EEAPaRwghZDDTp0v13GPHxLt9111et4iQ4Rmx2J47d+7A/RdffBEbN25EMJj69v7+fuzduzfltYSQ0dHYaJcmpn2EEEJS2bpVxLZGt8vLvW4RIUMzpgmS27Ztc03x19bWhm3btl1yowiZqtA+QgghQzNzJrB4sWRr2rXL69YQMjxjEtvqzXZy8eJFFBQUXHKjCJmq0D5CCCHDs3Wr3B46BLS0eNsWQoZjVHm2735/6q/P58NnPvMZRCKRgecSiQTeeOMNbNy4cXxbSMgUoaGB9hFCCBkJs2YBCxcCJ05IdPv2271uESHpGZXYLikpASCR7aKiIkSj0YHnwuEw1q9fj89//vPj20JCpgC0jxBCyOjYulXE9sGDkoO7tNTrFhHizqjE9o9+9CMAwLx58/Anf/IntIwQMk7s2QOcP0/7CCGEjJQ5c4D584GTJ4Hdu+XcSUgmMibP9te+9jUUFBSgsbERu3btwq5du9DY2DjebSNkSkD7CCGEjI3rrpPb118H2to8bQohaRmT2O7o6MAnP/lJzJw5E1u3bsXWrVsxc+ZMfOITn0Abj3ZCRoxpH1m6lPYRQggZDXPnAvPmyTl0zx6vW0OIO2MS25/73Odw4MAB/PKXv0RraytaW1vxy1/+Eq+88gq+8IUvjHcbCclZTPvILbfQPkIIIaNFM5O8+irQ3u5tWwhxY1SebeWXv/wlnn76aWzatGngsRtuuAGPPPIIbrzxxnFrHCG5DO0jhBBy6cybJ/7tM2ckgHHTTV63iJBUxhTZrqioGMhMYlJSUoKysrJLbhQhuQ7tI4QQMj74fKnR7Y4Ob9tDiJMxie2/+Iu/wAMPPID6+vqBx+rr6/Gnf/qn+Mu//MtxaxwhuQqzjxBCyPixYAEwezbQ3w/s3et1awhJxWdZljXaN1199dU4fvw4YrEY5syZAwA4c+YMIpEIFi9enPLa1157bXxaOkba29tRUlKCtrY2FBcXe9oWQgCxjzz8sES1d+xgVJsQQsaD48eBf/onIBQC/uiPgMJCr1tERkMu67UxebbvvPPOcW4GIVMDp31k+XKvW0QIIbnBwoXAzJnAuXPAvn3ABz/odYsIEcYktr/2ta+NdzsImRLs3k37CCGETATq3X7sMeCll4CNGwHW3iOZwJg82wDQ2tqK73//+3jwwQfR3NwMQCwj586dG7fGEZJLNDQAL74o92++mUOchBAy3ixeDMyYAcTjEt0mJBMYk9h+4403sGTJEvz1X/81/vf//t9obW0FADzxxBN48MEHx7N9hOQEtI8QQsjEY2YmeekloLvb2/YQAoxRbD/wwAP4zGc+g3fffRd5eXkDj9988814UUN3hJABaB8hhJDJYckSoKYG6OsD9u/3ujWEjFFsv/zyy66VImfOnJmSDpAQQvsIIYRMJmZ0+8ABoKfH2/YQMiaxHYlE0O5SE/XYsWOoqqq65EYRkivQPkIIIZPP0qVAdTUQizG6TbxnTGL79ttvx3//7/8d8XgcAODz+XDmzBn82Z/9GXbs2DGuDSQkm6F9hBBCJh+fD9iyRe4fOAD09nrbHjK1GZPY/j//5/+gs7MTVVVV6OnpwdatW7Fo0SIUFRXhf/7P/znebSQkK6F9hBBCvGPZMqCqSoT2gQNet4ZMZcaUZ7ukpATPPPMM9uzZg0OHDqGzsxOrVq3C9u3bx7t9hGQlpn3k8stpHyGEkMlGvds/+5lYSdavByIRr1tFpiKjFtvJZBKPPvoonnjiCZw6dQo+nw/z589HTU0NLMuCj+PkhKTYR265hfYRQgjxgmXLgMpK4MIFSQW4ebPXLSJTkVHZSCzLwu23347Pfe5zOHfuHK688kpcccUVOH36ND7zmc/grrvumqh2EpI11NcDO3fKfdpHCCHEO/x+27u9d69MmCRkshlVZPvRRx/Fiy++iGeffRbbtm1Lee65557DnXfeif/3//4fPvWpT41rIwnJFhIJ4MkngWSS9hFCCMkEli+XAMjFi8DLLwObNnndIjLVGFVk+1/+5V/wX/7LfxkktAHg+uuvx5//+Z/jn//5n8etcYRkG2ofyc+nfYQQQjIBv9+2j+zdK8VuCJlMRiW233jjDdx4441pn7/ppptw6NChS24UIdkI7SOEEJKZrFgBlJVJ+fZXXvG6NWSqMSqx3dzcjOrq6rTPV1dXo6Wl5ZIbRUi2odlH1D5yxRVet4gQQohierf37AHeLxNCyKQwKrGdSCQQDKa3eQcCAfT3919yowjJNnbvlsg27SOEEJKZrFgBlJYCXV2MbpPJZVQTJC3Lwmc+8xlE0iSqjHGaL5mC0D5CCCGZTyAg3u2nnpLo9jXXAKGQ160iU4FRie1Pf/rTw76GmUjIVIL2EUIIyR5WrpTKvm1twGuvAevWed0iMhUYldj+0Y9+NFHtICQr2bWL9hFCCMkWNLr9y1+K/W/1amAIdywh48KoPNuEEJv6eomQALSPEEJItrByJVBcDHR0AK+/7nVryFSAYpuQMUD7CCGEZCfBoF3YZtcugHkdyERDsU3IGKB9hBBCspdVq4CiIqC9HTh40OvWkFyHYpuQUUL7CCGEZDfBIHDttXJ/1y4ZrSRkoqDYJmQUmPaRZctoHyGEkGxl9WoJlrS1ASx+TSYSim1CRoFpH7n5ZtpHCCEkWwmFGN0mkwPFNiEjhPYRQgjJLVavBgoKgJYW4M03vW4NyVUotgkZAbSPEEJI7hEOAxs3yv0XX5RzPCHjDcU2ISOA2UcIISQ3WbNGzu3NzYxuk4mBYpuQYXDaRwoKvG0PIYSQ8SMcBjZskPuMbpOJgGKbkCFIJICf/5z2EUIIyWXWrgWiUeDiReDwYa9bQ3INT8X2Qw89hDVr1qCoqAjTpk3DnXfeiaNHj6a8pre3F/fddx8qKipQWFiIHTt2oKGhwaMWk6nGrl1AQwPtI4QQkstEIoxuk4nDU7G9c+dO3Hfffdi/fz+eeeYZxONxfOhDH0JXV9fAa7761a/iqaeewuOPP46dO3eirq4Od999t4etJlMF0z5yyy20jxBCSC6zdi2Qlwc0NQFvv+11a0gu4bMsy/K6EUpTUxOmTZuGnTt3YsuWLWhra0NVVRUee+wx3HPPPQCAI0eO4PLLL8e+ffuwfv36YdfZ3t6OkpIStLW1obi4eKI3geQIiQTw8MMS1V62DPjIR7xuESGEkInmhRdkmTYN+NKXOJo5meSyXssoz3ZbWxsAoLy8HADw6quvIh6PY/v27QOvWbp0KebMmYN9+/a5riMWi6G9vT1lIWS0vPhiqn2EEEJI7rNunVhKGhuBd97xujUkV8gYsZ1MJvGVr3wF1157LZYvXw4AqK+vRzgcRmlpacprq6urUV9f77qehx56CCUlJQPL7NmzJ7rpJMc4f1682gDtI4QQMpWIRgEdNN+5E8icsX+SzWSM2L7vvvvw1ltv4Sc/+cklrefBBx9EW1vbwFJbWztOLSRTARavIYSQqc369ZIOsKEBcORsIGRMZITY/oM/+AP88pe/xPPPP49Zs2YNPF5TU4O+vj60tramvL6hoQE1NTWu64pEIiguLk5ZCBkptI8QQsjUJhoVOwnA6DYZHzwV25Zl4Q/+4A/w85//HM899xzmz5+f8vzq1asRCoXw7LPPDjx29OhRnDlzBhs0Rw8h4wTtI4QQQgBJAxgOy3Xh2DGvW0OynaCXH37ffffhsccew5NPPomioqIBH3ZJSQmi0ShKSkpw77334oEHHkB5eTmKi4tx//33Y8OGDSPKRELISKF9hBBCiJKfL2Xc9+yR6PaSJcxMQsaOp5Ht73znO2hra8N1112H6dOnDyw//elPB17zzW9+E7feeit27NiBLVu2oKamBk888YSHrSa5CO0jhBBCTDZuBEIhoK4OOH7c69aQbCaj8mxPBLmct5GMD+fPA488IlHtD3+YUW1CCCHCb38L7N0LzJoF3Hsvo9sTSS7rtYyYIEmIV5j2kSuuoNAmhBBis3EjEAwCZ88C773ndWtItkKxTaY0pn3k5pu9bg0hhJBMorAQuOYauf/CC8xMQsYGxTaZsjD7CCGEkOG49lqJbtfWAidPet0ako1QbJMpCe0jhBBCRkJREbBqldxn3m0yFii2yZRE7SMFBbSPEEIIGZpNm4BAADh9WhZCRgPFNply0D5CCCFkNBQXp0a3CRkNFNtkSuG0jyxb5nWLCCGEZAMa3T55ktFtMjootsmUYudO2kcIIYSMnpISYOVKuc/oNhkNFNtkynD+PLB7t9ynfYQQQsho2bwZ8Psl53ZtrdetIdkCxTaZEtA+Qggh5FIpLWV0m4weim0yJaB9hBBCyHiwaZNEt48fl8qShAwHxTbJeerqaB8hhBAyPpSXAytWyH1Gt8lIoNgmOU1/P+0jhBBCxpfNmwGfD3j3XQnoEDIUFNskp3nxRaCxkfYRQggh40dFBXDllXKf0W0yHBTbJGehfYQQQshEsWWLRLePHpVsV4Skg2Kb5CSmfWT5ctpHCCGEjC+VlXJ9AWQUlZB0UGyTnIT2EUIIIRONRrffeUcyXhHiBsU2yTmc9pH8fG/bQwghJDepqrJHTundJumg2CY5Be0jhBBCJpMtW+T27bdlRJUQJxTbJKegfYQQQshkUl1tB3bo3SZuUGyTnMG0j9x6K+0jhBBCJgeNbh8+DDQ1edsWknlQbJOcwGkfufxyr1tECCFkqlBTAyxdClgWsGuX160hmQbFNskJdu6kfYQQQoh3bN0qt2++CVy86G1bSGZBsU2ynro6YM8euU/7CCGEEC+YPh1YskSi2/RuExOKbZLV0D5CCCEkUzCj283N3raFZA4U2ySroX2EEEJIpjBzJrB4sQSA6N0mCsU2yVpoHyGEEJJpaHT70CGgpcXbtpDMgGKbZCW0jxBCCMlEZs0CFi5kdJvYUGyTrIT2EUIIIZmKRrcPHgRaW71sCckEKLZJ1kH7CCGEkExmzhxg/nyJbmuxNTJ1odgmWYVpH7nyStpHCCGEZCbXXSe3r78OtLV52hTiMRTbJKsw7SM33eR1awghhBB35s4F5s0DEgl7NJZMTSi2SdZw7pw9HEf7CCGEkExHvduvvgq0t3vbFuIdFNskK1D7iGXRPkIIISQ7mDdP/NuMbk9tKLZJVrBzJ9DUBBQW0j5CCCEkO/D5UqPbHR3etod4A8U2yXhoHyGEEJKtLFgAzJ4tI7R793rdGuIFFNsko3HaR5Yu9bpFhBBCyMgxo9uvvAJ0dnrbHjL5UGyTjOaFF2gfIYQQkt0sXAjMnAnE44xuT0UotknGcu4ci9cQQgjJfszo9ssvA11d3raHTC4U2yQjoX2EEEJILrF4MTB9ukS39+3zujVkMqHYJhkJ7SOEEEJyCTO6/dJLQHe3t+0hkwfFNsk4aB8hhBCSi1x2GVBTA/T1Afv3e90aMllQbJOMgvYRQgghuYoZ3T5wAOjp8bY9ZHKg2CYZBe0jhBBCcpmlS4HqaiAWY3R7qkCxTTIG2kcIIYTkOj4fsGWL3D9wAOjt9bY9ZOKh2CYZgWkfWbGC9hFCCCG5y7JlQFWVCO0DB7xuDZloKLZJRmDaR2680evWEEIIIROH6d3et08sJSR3odgmnkP7CCGEkKnGsmVAZaVEt196yevWkImEYpt4Cu0jhBBCpiJ+v+3d3ruX0e1chmKbeAqzjxBCCJmqLF8OVFRICsCXX/a6NWSioNgmnnH2rG0fue02IBr1tj2EEELIZOL3A5s3y/29e6XYDck9KLaJJzjtI5dd5nWLCCGEkMlnxQqgrEzKt7/yitetIRMBxTbxhBdeAC5coH2EEELI1Mb0bu/ZA8Tj3raHjD8U22TSoX2EEEIIsVmxAigtBbq6GN3ORSi2yaRC+wghhBCSSiBge7cZ3c49KLbJpPL887SPEEIIIU5WrgRKSoDOTuC117xuDRlPKLbJpHH2rMy2BmgfIYRkD319QHMzUFsrk9gImQjM6Pbu3TISTHKDoNcNIFMD2kcIIZlEIiERROfS1eX+WFsb0N4OFBVJpdvNm2WEjpDxZOVK4MUX5Vh7/XVgzRqvW0TGA4ptMinQPkIImWgsSyLPbiLaufT0pF9PX5+I69ZWWbq6JGNEMAicOQOcPAk8/TRw443Apk0U3WT8CAblmPqP/wB27QKuvloeI9kNv0Iy4dA+QggZK5YlZazTiWYzEt3VBSSTI1+33y9CORgU8d3VJeK6pwcIh4Fp04BZs+R+dTUwYwawfz9w5Ahw8CBw6hTw3HPABz4AXHstRTcZH1atEqHd3i7H2TXXeN0icqlQbJMJxbSPXHUV7SOEECEed7dsuC2j8a76fEB+vgjfdEsyKSNtDQ3A6dPAxYvyXr8fKC+X+9OmAXPnAvPmya0K6ZtvFiH0618Dx48DL70konvnTmDrVopucukEg3Ic/eY3dnQ7EPC6VeRSoNgmE4ppH7nxRq9bQwiZSJLJ4QW0Pt/bO7p1RyJDC2hd8vMHC5PWVhHV770nt83Nqc/7fBK5NsV1fr57O/LygA9+EFi7VqLaL7wgtpJ9+2Tde/aIUKLoJpfC6tUySbKtDTh0SKLdJHuh2CYTBu0jhGQ/liXCeCQR6O5uef1ICQaHF88FBXIbCo28vc3NInxPnZLb1tbU1/h8wPTptrieM2f056eSEuCuu4CNG4Hf/hZ4+WX5vD17JGvJ/v3A+vUU3WRshEJy7Dz9tES3r7qK0e1shmKbTAi0jxCS2fT1jUxAd3VJ5o6R4vPZAnm4JRKR118KliU2EFNct7envsbvF7+1iuvZsyVCPR5UVwOf/KQIo9/+Fnj7bWlHXZ0sBw4A69ZRdJPRo9HtlhbgzTclUwnJTii2yYSg9pGiItpHCJksNJ3dSLzQfX2jW3c0OjIBHY2KuJ0oLAtoakoV152dqa8JBICZM1PFdTg8cW0CgAULgC98QUTRs8+KteTUKRnha2oSb/fatRTdZOSEwzJy8swzkg5wxYqJ/W2RiYNim4w7pn3k1ltpHyHkUhivdHZuhELSIR4uEl1Q4F36McuyJzKquHYWlgkGRVzPmyfLrFkjt52MlGRS/LNDWVp8PhFEy5aJuH7xRYlunzol1pLWVrGbrFlD0U1Gxpo1Yk1qbpaO3FVXed0iMhYotsm4Eo/TPkLIcLils0sXjR5rOruRLBMd7R0LyaSIaxXWp08P7kSEQiKodTLjrFnj1xmwLNnnDQ1AY6N929Qk57doVKKN69al33/BoLzm6qvFBrB/v7z/3XfFvtLRQdFNRkY4DGzYIKMlL74IXHklo9vZCMU2GVdeeIH2ETJ1mah0dkBq9HmoSHQ0euk+6MkkmQTOn7fF9ZkzgzOVhMNiBVFxPXPm+EwW6+sTIW2K6oYG+Q7jcRH5vb1y29MjHaT8fPHQ7tsnQnnNmvSiOxqVzCVr1oi17tAhiVAePSrfVU8PRTcZnrVrZbT44kXg8GER3CS7oNgm4wazj5BcJF06O7fHJjOdXbaSSNjWChXXTv94JCIZQlRcT59+adufTIpQMUV1fb2IfFNMm+I6HLb3fShkpwLs7QXeeEOykTQ3yzlv0yYpPJLOXlJaKplL1q8H/vM/gbIyEexHjsh6YjGKbpKeSESi2889J9HtK65gdDvboNgm44LTPrJkidctIiQ9k53OLl0kerx9xZlIfz9w7pwtrmtr5XxhkpeXmuO6pmZsYsKyxKKholpF/dmztqddxXRvr7w+HJbvp6AAqKyUtiST4q9ub5fOQE+PPRLR0yPCOxyWSHVpqQj5PXuAzZslg0Q6S8v06ZK55MQJmfSmovvYMbkfj1N0E3c0ut3UJBlvli/3ukVkNFBsk3GB2UdIJjBUOjtnJDqT09llM/G4iFud0Hj27GDLTH6+iGoV2NOmjV5cx2IiqM+csYvVnD0rkxg1Sm1GzAMBW1SXl8ttURFQXCzramkRkX76tAjxZNL+HqNR+/tvbhYRfuyYLboPHhSxfOGCLbqvvjq96F64EJg/Xya8PfecLbpPnJC27d1L0U1SycuTkZEXXrCj21P5PJNt+CxrNDGb7KO9vR0lJSVoa2tDcXGx183JSWprgR/+UKJEH/84o9pkfEkkRu6DHq90dk5hnZ/PYdt09PXJOUDF9blzgzsyBQV21HrePKCqauRCIR6XNHonTsjt2bPyGRcviqB2fpbPlyqOy8pkAuWsWSKuYzGxkJw7J0K9qWlwdpNQSOwdNTUS7c7Pl4j5hQtyHHR2StS8o0OEdzQqPvJYTMTy3LmSf3vLFsmNPJQFpr9fcnHv2iXb09Iix3tpqbQ3GKToJkJPD/Ctb8lx9pGPSNabXCKX9RrFNrkk4nHge9+Ti9BVV4kvkZDhGEk6OxXYTiE0HKHQyCLQXqazy2ZiMRGpKq7r6gZnSykqShXXFRVDi+t4XETm6dN2fupz58RTffFi+lGISES+x6oqKVozZ458ZlWViOxkUkT6W29JJPrMGRHH5lXP55PjYdo0Ecg6cfHCBflst2OwuFheG4tJGzs6JKIejUo74nFbdNfUAFu3SkrAoUR3d7cI7pdeEgHe0iK3xcUS1aToJoCMIu/cKcffF7+YW9HtXNZrFNvkkvjtb2XIs6gI+PKXOSlyKmNZo6tKOF7p7JxR6HA4ty5AXtPba6fgO3VKxKXzqlFSkiquy8oGfwc9PWLBaGmxs4+cOSP3GxuHrlQZComAnj5dItRz54oVY/p0+axQSNp59Kj4qN95R0S2m1APhyVaPX26HDvJpLSpoUGEuDk6ovah4mIR49OmSfq+s2dFUBcUyGP9/bIdnZ0iuvPyZP39/dLRmDtXRPjWrcOnbmtpEWvJm2/Kfm5vt6P1oRBF91Snpwf45jflOP3oR4GlS71u0fiRy3qNYpuMGdpHpjYXL0r+YBUZY0lnl58/8qqEFNCTQ3d3qrhuaBgsrsvKbGE9b55YHlQYtrTYorqpSc4TZ8/KY11dssRigz9XPdXTptlR6vnzgUWLRGCbUWHLEqF+8KBMFlMB7LQR+XzSthkzbCtQV5ccs62tg4V4JCKBg4oKO6Lc1yfb1doqEeziYmnX+fMSfY/F5PisqpL11dfLZ7S1yfpUdFdW2mkLt26VCW5Die66OplEefKkPRIUDIrg9vvl/jXXiOguKhrZd0tyg2eflVGQ6dOB3//93Dk35rJe81Rsv/jii/jGN76BV199FefPn8fPf/5z3HnnnQPPW5aFr33ta3jkkUfQ2tqKa6+9Ft/5znewePHiEX9GLn95XhKPA9/9rggu2kemFufPy4n+nXfcs3QMl85OI9EFBbmTzi6b6epKrc7Y0DD4NRqdnTVLxKvaHFRUX7woIrOtzbb/dHVJFM48RsJhEaZ5eSJOtTDN/PlyW1npfky0twOvvy52kKNHRYB2dAx+XTQqtg09tuJxiZpfvGi3w7Ikmp1M2in9tMR8b6+8tqNDRLYu8bgsliUit7xc/LJLlsj2nz0r2xqJyL4CZH90d4tIV9GdSNiie9Ys4Lrrhp7oZll25hLt9PT3S7stS95H0T316O4W73ZfH/Cxj+VO8bhc1mueOha7urpw1VVX4fd+7/dw9913D3r+f/2v/4W/+7u/w49//GPMnz8ff/mXf4kbbrgBb7/9NvLy8jxoMVGef14uSsw+MjWwLBFiu3bJxV+57DLxohYX2wI6E6sSEpuOjlRx3dSU+nx/vwjQkhI7u0pvr3zvr79uW4U0Sq1LIiHiLy9PltJSEZilpVKQZv58iepWV0v0OhJxb188LvmnDx6U2xMnRLg68flEuJaUiLDWcuonT8o6+vulTfG4tNnnsyPJyaQ8r6/r67Nfb1my+P2yXhXCfr+8Lx4X4dvUJJaVJUtEeHd1SaS7rs62vQAi5Ht6ZH+rxampyc6eMmeOiO7LLx8sun0+iewvWCC5vZ97zvacq6Wkt1dGmF55haJ7qpCfb5dx37lTjsFciW7nKhljI/H5fCmRbcuyMGPGDPzxH/8x/uRP/gQA0NbWhurqajz66KP46Ec/OqL15nJPyStoH5k6WJZEEnfvFmEAiOhYvlwKeUyb5m37yPC0taWK6wsXRFyaRVw04hwMilAOh0V4dnenRqpVVOflyet1ycsTYT5rlghsnWw4bZoIv6Eit2fPirB+6y3g+HGxhzjzcFuWfE5ZmQjgWEw6Dc3N0n4V1LGYbSUJBGzhnEza91VQA7YA9/lkUZEdDNrC3BTcliWfFYuJONf3FRWJIL7iCrtoT0eHrKesTN7b2Cjva20VoVxTI+urqrItOdddJx3YdPsrHrczl8Ri8v7iYnl9e7u8hpHuqUFXl0S343Hgd38XGMWAf8aSy3otY+finzx5EvX19di+ffvAYyUlJVi3bh327duXVmzHYjHEDENgu56ByLhgFq9ZuZJCO1dJJET87NkjIgGQi/jVVwMbN9oCgmQWliVi7r33xMt89KhEYc0KieoxLi2VpaJChGNXlwg2LVVuWbaoLiwUUaiT9MrLbTGttxUVw6dHbGuTCO0bb0jbTp2yRaK2Px6X4y8/X0RkX58I17o6Ef+JROqiE23NCLRiimQVxiqeA4FUy4qbwFXbRjAokfhwWLYhEJD7GhVva5MOw7FjEqlevlyi+PX1EsUOBOyMLJGIfAe1tXZRI83vfeqUjABs2ybiydmmUEg6uatWSa7ll1+27TTV1dIenUvBSHduU1Ag0e29eyW6vWgRo9uZTMaK7fr3xw2rq6tTHq+urh54zo2HHnoIf/VXfzWhbZvKmPaRG27wujVkvInHxSqwd6+INkDEwZo1UlCB2Q8yh1hMIrsnT4rd4t13RbBptNekqEiEdWWlCEeNR+hEvlBIhHRlpUSnNSVifv5gUT1t2sisQr29Eqk+dEiE//HjIvzVsqFCtafHFgkqtNX+YYpqjUyraNaItHPiJJAqvHUxhbYu5vv8ftkP2sFQm0syaUeREwk7O4mmrszLk+diMdmf77wj38n06ZJ5pKZGxHRzs3xmebldubKvTyL7GoVvaLDTHy5cKKJ74cLBIio/X+x769bJZLm33pL3BgIi1nt6ROhTdOc2GzdKqsizZ8VutWiR1y0i6chYsT1WHnzwQTzwwAMD/7e3t2P27Nketih3qK0F9u2T+7fdxjR/uURvr0TJ9u8XwQCIqNiwQS7UnCIx+ViWfBc6CbG5WZYzZ0SM1ddLh8gtA4f650tKRBgC9uui0cFR6GDQFtKmuC4oGFm0LB6Xdr38skR4jx4V/7IWGjInGgLy2Wrv8PtFxPb32xMXVTTr84GAfauP6z7S9psRa9NvbUa3g0ERuUVFsm2a5SaRkN9ALGYL/Y4OEd+hkLxW91ciYVtBdFSgvd32Y2sH4r33RARVVYm95LLLxMLT3CzrKSuz29TfL5F7Fd319SK6T5yQCPe2bSKind9FWRlwzz3yO33mGYmMnzwpv9crrpDjpq6OojtXKSyU73T/foluu3XMSGaQsWK7pqYGANDQ0IDp06cPPN7Q0ICVK1emfV8kEkEk3cwbMmZoH8lNOjvlRP3yy3a0s7RULsgrV9rD3GRiSCQksmxm9tDblhb5TjSjRWurvNYU18FgqiWksFCEViIh353bhLvy8sGiuqxsaAuIRm5bW6VdJ09KHug33xRR2dBg5053RqNN0avRYbV/aLTaGbE2fdL6mPqoddE0eLro+9TioWklVSirVaajw875rRYRXYfe185lYaHsH83vXVMjAYeXX5Zt6OiQpbRUXt/eLuvw+WTdsZh0OhoaZL8vXSriWTtOyaQ8nkhIuxMJyfbj88lzKrqPHZP3btsm3m4nM2cCn/60jG4884xYVw4fls7W2rUiuM+epejORa69Vr7T2lr5XS5Y4HWLiBsZK7bnz5+PmpoaPPvsswPiur29HQcOHMCXvvQlbxs3BWH2kdyipUWsIq+/bufGnjZN/KDD5f8lo6Ovz11MNzeLeDaL+2g02xTXgYBdQVCj1Jr9RVPXOdPlBQKpVRH1tqrKvQOVTNqf19Ymv/W6OhGJtbUSMa2vlza3t4uIVLFsRqOdFg3N+uFWrMa0duh9U1AHAtKRKCqSbVQxrEI8HLbtL/n5sk7tnLS3iwi+eFH2fyCQKswjEVtQRyJ2wZyZM+383gsX2vvb5M47Zd/8y79IdpDiYomKt7TIPtdy7smkfIZmPWlslMh2SYmdYUQ7L4mEdHjicTvSrykY+/tl3585I3ahZctkIuXcuant8vkkCLJokYwuPP+8fJcvvSTbdt11EimvraXoziWKisTD/9JLEt12GwEh3uNpNpLOzk4cP34cAHD11Vfjb/7mb7Bt2zaUl5djzpw5+Ou//mt8/etfT0n998Ybb4wq9V8uz26dLMzsI7ky63mq0tgomUXeessWebNni8hm+qixoQVH3MR0S4sIr6He29Mj4qqvz7bwaARYM18Eg6m2ELMzFAoNFtXTpsnrld5eW0g3N4t4q6+X46GpyfZ56yTJ9na7THlfn3skGhhs0zC91ebz+hoz8hwO29tVWioR3rw8O0oNpGb80A5HX5+0taND2qltVLHujHbr51ZUSGR6xgw55ufNE2FaVTV859Ky7H1YUmJb6Lq7gZ//HHjqKdmf/f2yL/v67NGAnh55rVplALsi6rx5cj7VDpamXdT0ipYln6lZS4JBEc5z5ohNZNs22RY3+vpEVO/ZY49aLVokn/fWW3JeB5i9JBdobwf+9m/lGPvMZ9xHP7KBXNZrnortF154Adu2bRv0+Kc//Wk8+uijA0VtHn74YbS2tmLTpk349re/jSWj8DDk8pc3GZjFa1aulKgOyT5qayVd2LFj9mOLFonInjuXIns4NIdzugi10zftRNPWlZTYAru1VSwGznzV8bi8rrRUbouK7MhvRcVgUV1SYpcJb20V0Xf+vERGtaBLZ6ct/FTcx+MiIHt6RDRqOjunYHYKZ2c0W59TwarRahW80ah0ECoq7LzYwaBtOVEhqJYTTTtoiv/OTrtAjlNQq21Dq0VqBUotmLNggQjS4DDjuD09ErHWiL52RC5ckO9Zv5uiImDLFuBDH5J1q+XjhReAn/1MJkjqSEF3t71Pu7vtfdbfb48ERKMinhcvlvW3tcltXp7cqujW/NoVFbLdWmXzyitFdM+c6b5dXV125pJkUj7zqqtk37z6KkV3rvCrX8l3PH++WIqykVzWaxmTZ3uiyOUvbzJ4+mnxKBYVAffdx4ly2YRWn9u1S3yfgFxoly0TkW1MhSAQYZNOTLe2pto9nGiu5fJyEdV6W1IiIuu998TffPy4rKurSx5XganCurRU1lNcbIvpsjL53QUC0pbz52VRIdjcbOfD7ukZnMVDF80AYk5G1Ii1LmYOat0uN1+1af/w+20rh6YErKiQ7dAqjio0VZhqBUQV++p97uy0/cumoNYotc9nl3SvqRFBPXeuCIz58207iaKjBdoZaWiQzsiFC/a+UzuP6Tl37hPtFCSTdgXJ0lIpRHPzzeKLLiyUbTpyRCwm+/fbn9/WZmc00VzgOhKg+0WrTGqe7Y4OeW0oZO9Dy5LHk0nZx+GwLbqvukpEd7rfdXOzZC45fFj+DwYlw9CMGXKOp+jObtragL/7OzmmPvvZwTajbCCX9RrFNknLmTPAj35E+0i2kUxKdG33bhFlgIiXq66SC6iWk55qaEQ5nd3Drfy3SSAgwtcU03pbViYipbNT/LKHD4voOn1aIpJqHwDkdSquq6pE7BQWyuNqG2lpkchqY6MdIe3uTi+kNeJrLlpVUSPavb12ARinsHamwjMfMz3UwaC0taxM2l5TI8dTMplq5zDFeSw2OErd22un2tMMIXrf77fLntfU2D5qjVLn5bkX22lvFwFtRqXVZqLb7xTRzk6GOTnT3L/mPtN9UlAgbSwulu9w82bg+uvF6+33Sxv+9V+B//xP+Q7jcTnWenpkXVqEx2yTWmGmTZORp2hUtq2317bQqC2lo0PaU14u+0v309VXiz/7/RwDgzh7ViZRagc8P18i9eXl0jGn6M5ennpKRisWLAA+9SmvWzN6clmvUWwTV2gfyT76+yWn8Z49dnqxcBhYvVpSg02Fwz+ZFIGVLkJt1LtyJS/PXUyXl9t2DkD29YULYgM5fFhS3Z04IQLLjICrgIpGbb91IGB7jjs6bDGlaefMRdHsGzpZMhoVsVdQIEKrv19EpXqy0/mtzci0/g+kZgHRz9HJiZWVspSWyvEUi9mp+3Td/f2yDd3d9nZpNNtp+zCzfpSV2QVxqqrkcyoqZJu6uuysLGqRaW62160CWm91W51XNLdJmJpiTycvarRZc4A7q06a69TRiEjEnmxZXCzHSEWFRKZvuEGEqo5s/Md/iBA6c0baqJ07HWXQzzUFfSAg61ywQPaTHidaQVPzk3d2ynvV866ie/VqEd1uVV4tSyxl//mf0ikB5DM+8AFZx86dFN3ZSGurRLeTSeDee9P7+TOVXNZrFNvEFbWPFBcDX/4y7SOZTCwm0Yx9++zobDQqBS/Wrh08tJ7txOO28HKze7hlvjBxs3voreZdVrQiY2OjREzPnbMrH+rnaYRSBTOQmlUDsEWpWfHQRAVgJGJbMgoL7cqNVVXS7r4+2wpx/rzctrTYEWtTWAODxbSZs1ojyFpuXTsERUX2/3l5dnRcU9mZtg/1MWuUWhfzM8Jh6RTk59vr1KI4PT2yDlP0muJZrS+66HY5i9Vo58Htuf5+26turtNNTDurUbpF+/V9mgEmHJb9qFH/8nLZjzNnil1r82aZfJxMirXk8celyI9Wxmxrk+21LFvwm2I/EJDz8Jw5Eq3WjCtmTm+fz96PpaWyn9Vic801wNatcgw5SSYlI9Hzz9sTeWfOBLZvt33oFN3Zxb//O/DaazIy8olPeN2a0ZHLeo1imwyC9pHsoLsbOHBAUj7p0HJxsUSxV68eWZW/TGUou4dZ3tsN9UCns3ukyx3e3W2L6sZGEdYnTtgFZC5eFHGkxVk0impOCAyHU3NEA7bADYdFBJkTBmtqZKmuliUctjsSDQ3yWzxzRoT1hQu2lSQeTxWMQKqXWiPU+tk6UVFFYTAo4jc/X4Sh2lhUPJu2D42o9vfbAlY/zxS4ThuLZhsx36NRcLfFzdLijMSb6QbNDoy5nnQFckzMyL5zcT5vtsPvl+/fuW7dz5pNRUcFNKf5kiUSNV69Wo7NI0eAf/s3+f12dMj+bW62feMa7dbt08/Iz5do5cyZto9bRbfeV99+aam8XkX32rUiut1sZH190lnfs8ee7Ktt7uyk6M4mmpuB//t/5dj53Ofk+88WclmvUWyTFGgfyXza2uTC+OqrdkW+igqJoq1YMTjnciai2RXS2T2c5cadRCLp7R7O1HhO4nER0u+8IxHGo0dFSFy4YE/SMy0YbgVXTDuE+o3z8uSzTT/zzJmyaHXGwkL782trxT9bVydi+tw5Edpqx9A2mBYDwL0tKnA1kqzRYxW62jZNWafZPsw0fyqozSwkTv+1puzTz9BFC+ioNcPsCKgANicDOidexuOpFSbdhLXeB1Kf09crZkdH75sFb8xouL5mqHSGZicmFLIzjJjb6Yx2RyKyhMPynWtqw5kzpcT2hg1SpKaxEfjlL8XO0dhoT9LVCbk6MdMcsdARiZkzbSGlmVp0Qqbfb48OlJTIyMLs2SK616+3PdpOOjvFQvLqq/Z3pR7wpiaK7mzhF7+QuSOLF0vALFvIZb1GsU1SoH0kc7lwQSJPb7xhR7umT5dh6qVLM68QTX//0HYPc9KgGzok7yaq8/MHD/HrBMjOTvmMs2fFT/3uuzIZrKHB9srqhDfnAgyeGKjlvc0Je9Oni3iZM0cmx9XUyGtCIdmupiaJiJ85IyK6rs4uaqJiLRaTRSf4qbA2rSZmO7QtatMwb1UUqpfarNSogi0WsyPyirmtZqVGtUaYt/q4HmdmlFqj7dp+MwOKCmWnxUXXod+d0xdt3jqFsSmaTbuOGUXX//3+1LY6RbVpOTE7MOa6zMmUuo80ZaIZWdcOgK47GLQ7I/n5drR7+nQRQps3i2ANhaRAzq9+JRalWMxONamRZv3+TBtSKGRnZQmF7EmgpuhWP7oWQtIc4xs2iOjW6pcmFy5I5pJ33rE/Z8MG6SicO0fRnelcvCjRbcsCfv/35RyVDeSyXqPYJgPQPpKZ1NVJZpF33rGFwrx5cqHWPL9e0ddn5yF2s3sMdXbx+4e2e6gNJpGwM0+oV7ixUQT02bO2f1mzT3R12cLEiRkx1TZoae+CAhEL1dXid1y5UkTE4sWplhwV9doGFdTnz8tjzomYaglQcdbZaYteU4wCqXYG9XGbYtLE6QE3o73OSK/TDqHC2dz2ggI78q0CWn3OGl1X77bpdzaFqLkdzgi5KWidx4E5MVNfp+vW9em6tG263aYodm6/c3KkaQ9xCmozUu70g5vP62vicdlfyaR8p9rR0O/U2XnTqpXaeTNzgq9ZI3MsFi4UD/WTT8rvXX3xajHR78as4AnIvquslI5gQYH9fCwmbfP7bU+8im7N8HLttXIuKSkZfIzV1gK//a0trPPzJcq9apUc+xTdmcsTT0hg5rLLgI99zOvWjIxc1msU2wRAqn3k6quBO+7wukVTG8uSCNeuXZKjWVm6VOwiXvrwkkmJ2h48KN5TN1GrhMPp7R7RqJ29orPTFtMtLSKiz52zi7JoXmozCuxMfaeYw/4aWVS/cn6+RKinTROxk5cnYmfuXBEec+eKEEkkJLLY1CRiurZW2qNVF7VkuaLCULNy6GRJvTXb64ziOqPXTv+waaXQ/91sE+Z7TZ+4OekyGrULymjbenpsEe02cdAZZXb7LHPypVNYmx5yjcabolkXt9zWzvzezuNQ22KWcde26jFg7kM3n7Y5OdLssDjFvBnltizbvqPvMYvQmNHudN5unTiqGV9mzJDO88aNcg6+cEEi3a+8Yo+ItLbKovtFCxSZ21tcLNHroiK7Habo1v8LC+U1mqdcRbfzMmlZYrV65hn5LQLy+92+Xc5Hp07JBEuK7sziwgXgH/5Bvr8vfCE76irksl6j2CYAaB/JFPTCtmuXiDtALpBXXikXL7c0XpNFU5MI7DfeSM1JXVCQGpGORm3bgVtUuqFBovWaok4FtJkxwim6TAGo4kd90tGoCIfqahlSLy2VNpnD/orPJ/tw3jx5bXGxiBidiKgiv6nJ9m675WU2C7RodUC1ajirMLpZIZz2BVPQpotOm6LWTGPnzFOt7VKhZ0aCnW0x7zv9yaatZKios67DFLx6a4pX7YiYHQ8gdd+aQt3sRJiLttWMHrt5rp371CnczdeY+8DZuXF+rm5TJGK/PhKx16f7QdMSmhM3nR0WnTSbl2fnL1er0lVXiWgtLpYKkDt3yu9GRXdzs71OHcnR9QcC8huYMUN+m3rMqs3K55P39vXZk2TnzhWxv2mTLE6hnEjYmUs0yj5rFvDBD0qU/ORJiu5M49/+TYppXX458Du/43VrhieX9RrFNqF9JANIJIC33hK7iOa9DQZluHbjRndf5WTQ3S0n60OH5EKvRKMiCDSy19UlQrq11fZF6xC4CmkVpG6eYSA1omhZduRPo3+aCk8LfsyZI//rRD+dYKjr0QwNGt3VXNQXLsg+7uiwo7pOP7EpWjRCrO83I9emgHKLNpvRXd1W5+c4z8DO6LYZJdbIsDnZT3FGZM39a4pFc51Oq4opjE0BrK9zCm8VjIDt2Tb3j7NdbvaKdJFjp5/e7CA495mbVcZ8nfN5cz1uUXPnd2OK8GQytTOhHT99rWk5ikTs34dmkFFvt9Pqkpdn5+zWlI8zZ0rHcM0aiT4fPy62Di2W1NYm0Wbd12r5MTsueXnSEa2qsv3r2gHW/2Mx+Z0VF4voXrhQ/NzXXittMYnFJDCzd6/tJ1+6VDKXVFZSdGcSTU3At78tx9qXviTHQSaTy3qNYnuKQ/uIt8TjEi3au1eEIiAX3LVrxcPpvNBNBomETCo8eFBuzQjfzJly8W5pEU+plh/XqLRaSkz7gIo0U2gGg7KdKmQLC+2Lvd6PROycxcXF8lgiId5ojUS3tNhC3pyw5rQEaNTPGZ1WzMixmXrNLTWdG6aNQrfVLPgCuE/6MwWnGaXWgilm6jxdl0b3TWuCYoo4p9fb6bNWnCJa76vIVoGvkyNVnGnk1rT1mFFcUyQ7I8tO8eoU4OZ+Nb8j54iA83Gn0HazoTij987XOkcu3Gwt5v43hbceA/qZwaB9vJtl14eLduuITXGxdLQ1q83llwPLl8u+f/55KUyjHUcdKQLsUQSzkxKJiOCeNk0+wxx10u+1r8/Otz5vnnRqt24VoezM19/RIdH2116zP2fVKvF0FxZSdGcKjz8uE8WXLQM+8hGvWzM0uazXKLanOLSPeENvr+THPnDAHpItLJS0XNdcM/nfg2WJiD14UCLs3d32c5WVcvHt7ZVUeceOidDt6LB9wKawjkREGGsWBr/fFhWaKg6w7Q39/Xb+ac18obmwOzvtSLROEtOoqTkJ0hmFTDdJ0KxeqIJJi9KouHarQmgKZKeVw83na36u3ppCVqOYpsg1rQ1ufmIVydpGU0w7bRNOP7MppNV+ox72/Hx7n5v7JB6X/d3WJot668084242Drd95xSUTt+04ozam/vPTG+ojzuj5brvtIOgnRfLGpzX28zHrR0ic7Kpc0TAuR36HZiYnUqz86aPA3anRY9j09utn6XvVUuW5kLXzCOzZ0uaz/x8+b2+8YaM7JijS9rG3t7UiaZm5c78fPk8Fd36+fG4HCMqupcsERG9YcNg0X3hgqQuPHJE/g+FZDRu40ZpO0W3tzQ0AN/5jtz/8pe9tSIORy7rNYrtKQztI5NPZ6d0bl55xR76LSuTC9PKlekLrkwU7e1yoT50yLavAHJBraoSAXDihIjsU6fkQh6J2JaO6dOl/Spm+vrsbBummFa04IeKvUjEFh6dnbYXtbXVLiBjRqmd0VwzouycFKjC2mybesLNojCmQHazdChuPmB93HmrIk8zfaigNaOl5mKW6nbm9nbaHszoqpYL10wX2mnRTlBhof25uh/Ut6v2nrY2OQ7UVuPW6XCzu5j7xbl/nPYX7Wxom7UToP/rSIce/25Fb1QAmx0Xs5OgkVnz2NP7ZgfEKdDNtg+1vaYNSI8NnYDZ3z/Y+67bp7YTfU7vaxTbsuxRIad9R79njXarv7qszC5us2CB2AMuXpQo89mzdq7uixft71HzqCvBoARZpk2T2+FE9/z5ktli2zYJCmjmGuXMGbG4nD0r/xcU2JlL/H6Kbi/56U9lJHL5cuCee7xuTXpyWa9RbE9R4nHp7TY30z4yGbS0SI7sgwftC960aTIRafly99RuE0U8LifeQ4ck04k5HF5dLRfB2lqJmJ08KZErLUVdUCCviURs/7NbzmrALvyigkNFpQohFb8qApyZG4BUz7NZndAsJ56XZws5XadmLzG91aYX2LQzmGLW6d11RmvdsmyoCMrPl/tmxNuMRDtzMTsjt+b26jbqouJZbzVyqwJTKz6qT16L1LiJT7dJp+Y2uuFmw9AoqXZ4VDTrd2WOUqjwDAbtbBjqL3aWmdf16nt1sq12FrQ0fbqKkWZlSVNkO0m3vc5OlPN4NH3vih5/TqGsYlmPFf3enevQ71PT87lFu4HU46K0VH6TajGZMUOi3vG4Xaipvt6OdMdi9qiFloTXNhQUSOdaC92YohuQdUYi8pnz54tH+/rrxepmjsJZlpxb/vM/5doCSPYfzVwCUHR7QX292EV9PoluV1V53SJ3clmvUWxPUX7zG2D/ftpHJpqGBpn0+NZb9gVz9mxJsbV4sfvErInAsmRS1aFDEqU209ZVVoqAu3hROgMnT0q7AXuCYlWVCL2eHjsVn0760qFu5/C+ikDN+aveaWfVPacXVzM0aEnzggI7GqgFWjo6JCKrYl1FmymynNFJtzNduolzZgTVrNKoHQiNoAcC7mneNIJplkw3hboKczMK75ygaKYRNBe3XNfOSZfO/eAUbW77wWmPcfrQzW03BbVuoxktTlfgxvQvmwV6VHTq60wxrdtqRn7dvPdmx8ntex/JlS5d58fNuuI8VvR53R+m3Ue/H/NYAOznTOGuvyW1SZmdNBXxZlrLggI7E9DcuSK6q6pkPfX1doadixdFeGuGHf2OTL98fr4Ibp1M6RTd/f22DWXBAvGQf+ADMsckErFfl0hIFcqdO22b3OzZwIc+JLeWRdE92fzkJ2L1ufJKYMcOr1vjTi7rNYrtKQjtIxPPmTMiso8dsx9btEhE9pw5kyeym5tFYB86ZE/ABOzJiL29MkHzxAnxbCcStvWhrEwiZ319EhlT60FfX2qqs0AgVUCbEUZTHAGDxZxW1isosO0OiYQd4dPFFKDmOt2EphO3iKxTIJkiyPQUu00cNNdrpsjTdqgnWl9ril+z0qJGatNFZoeKvLpFX9084+Z79PXObTQtD1roxunxBlLbqet0FnHR48EsZ2+22fzedH+ouDb/NzsSQ1lYxoLz+zezxTitL6YnXzFHJ9yEt3aadD/4fPb2OSPe5oRK03Ji2oSA1Gi+c39opycalciz5tmeOVM6q3l58rttahLh3dAg5wItOmV2jJS8PPn9V1XZJeo7O+2ovSm6Fy6UyXfbt0vWFDMbSywmI3r79tnzK1SgV1baovuFF+ScqdtD0T3+nD8PfO978v3dd5/s/0wjl/UaxfYUg/aRicOyJDvH7t0SRQbkxLZsmdhFJquoQG+vzD4/dMi+gAFycSwtlXa++aZ0BM6dkwutRsg080dfn0SONYIdi6V6f/XWTO+mZxJnJFMjoabA1qimChGnlcTN6mAK63QCzBTPzsmGZrTa9Azr+8wS6M5opm6XOfHN3G5zkqQzdZ1TNDrb7mybGQV3inynLcWZk9xcv9nJMCOhuv/NSZkq9JwVG90i5IlE6kiD2zabkWfze3SbUDkeOL9rPQbMypR6q8edM9OI83hz7k+zw2JOeHTuG9NypMLbnJSrwtZcr+n/dm6D+RtKJgfncldM+5GWha+okGh3TY3dke3osIs1tbWJ8NaOjtk2QER8UZFY3rQIlSm6Ewn5TBXdV1whebfXrEmdf9LRIYL6tdfs7V29WjKdFBZSdE8Wjz0m5/2rrgLuusvr1gwml/UaxfYUg/aR8SeZFGvG7t0ybAvIhXHlSpn4WFExOW04cUIE9pEjqROhSkvlwnX8uLSztlbsF6GQPdGxtFTeo+XO1e+sIk8FgGXZUTZTdDsjreZkOVO4OoWLihpzKNspfpzeYmW4iLUpiFRYOgWOuZjtdQopp3g22+AWKTfXZdouTL+52mVM37NaR9ra7HSGpnXEHCVwRqtVSOqESec2awfBGYk2BbFG3NNFls0OldvozHiKaPOYM6PNzv3uFo3WbTAjwenE/ljba+53t86Xeaw4/dnacVVxa+5vZ0fPaXXSzzMngDpHNNTmlJ8vQri0VET3zJl2x0pTZZ4+LXMvWlvtDq8eb9r+UEg645WVcr7QipR6HCQSdmd+0SKZh/KhD4lYNkeDmprEz330qPwfDouY3rDBnixK0T1xnDsHPPKIHAN/8Ae2Rz9TyGW9RrE9hTh9Gnj0UTmhfeITclIkY6e/X8Ttnj32ZKBwWC4M69cPLns8ETQ0SBveeCPVW6kT6erq5DlN1aeV5TSKDcjjWgq9pyc1/7BGAJ2ZDABbVLilPzOzgQCDo93m8LVGZ90KxJiiXTGj0W5CS99viis3T7JbR8EpoMyIvL7GXJ96rnUxJ21qUR71smomEI0m6n5XUa37wjlR1Cm63CwvTv+2s5Niikxzn5jfpbOjoDgfvxRxaopnt89wfn9u60jXDrPzN9b2DXXfjPa7tc/8Xszn3IS3LmrbAVLnNri9VrfPtJnocWmWvHd2BtXWVFgoHX+toFpSIp1rtXfU1YkYa2uz50CYxyMgn20K+L4+OW9oNpZkUn7zpaViT7zySuCGGyQjiSm6T52S8u9aJbewENi2TUZbdf9RdE8M//zPUj8hE0e2c1mvUWxPEWgfGT9iMZn8s2+fXbY8P19m5q9dOzgl1njT1WVXdTx/3n48GJSL0MWL8tzp0yLqfD47W0ZJifyvwlpvTaGqWRHM/Lx6AdRIlgoLFZjmJDnT/2lOxNIJX26WAhNT6Jh2Cqc4NNdhvtcZ6U1nzXBOWjQj0OZETd1G7cDo9gJ2pyKZFOHS3GynXVMhrZFp03frTD1n7gdTjDo7MqZFxO3MPZRIda7buT/1sXTrTYdbhHsk65xInKMNzs5YuteYi9N+otlVmptFkJol0t2OYVN4m9F2NzFt+uWBwRFv87UmKrzN1ILOTCbma/WYVovJvHmSXai93R7J6uiQUTJ9zMyQouv0+2V/6MTMRMJO+Wkeu+XlEtS56irgxhvl2mO29e23gWeftYMVlZXi/b7sMnufUXSPL2fPAt//vnw/998v31+mkMt6jWJ7ikD7yKXT3S1FaF56SQQqIPtz40aJ3JgTg8ab/n7x2h06JFEJ80JaWCjteeMNuTBdvCgXKRWGxcVygVPhpzYRYLDA7umx/ZhOga02CM1Aoc+p/UHTuTknuTmzRaQTg6YoMl/j9KU6BbJZ5dDMmOEs4KIRZ32/iiez+A5gFwKJxeR12vHQzAzt7XYk2swYMVRE2bkdzm1P97y5L4bad+n2ZzrS7d9Muhq42Sic3705+mC+zzmKYY4EmMVxzOfNY8cUwM6Jnmr/aG62JxuqKHXrQJrtMX8Dpl3H3E5TeOsIkDmp1BntNm02pv3E9Pc7UbtRcbEI3JkzJW2gZcn5IxyW9548aVdp1ePd9Ivr76i4ODVtYF+f3T71dC9eLGL7xhtFfJu+/1dekcwlel6aM0dsKLNm2fuTonv8+Md/lA7VqlXA7bd73RqbXNZrFNtTANpHLo22Nimn/tpr9pBrZaWc5FessC8a441lyTDroUOSOlAFvmXZ1oTDhyVXdkODXLg1cqUVHNXzqwJbhbRenDUvtQ5L6yQsFdEqQCKRVL+uCnONfg+XWk5JF13U+2YE0jlpDLC9o4WFdml3tXCY1Sr7+21xo5F1MxOIimkVMCogNKJoCmizuqCb13c8fMpOIT2czcLErT3O13p1ljcj83rfeeuMMJv+dnPCqjPab4pIje6aItT0/evn6Pt13WZpev0eTSFsTkbV9ak3uaxM7luWdMK0yqkKb6e33tzWdMLb7XXaKXRmrTG3y4ycm78dfY3pyzfRfZ2fn2oxKSiQ7UkmZRvPnwcaG23LiBbhMa1fapuqqJDP7+62z5dAqr1k9Wrgppvk/KnfZ2+vnblEf3PLlknmEp33QtE9Ppw5A/zwh7Lv//AP5XvJBHJZr1Fs5zimfSTTerGZzoULMunxjTfsi9SMGZJZZOnSwUP840Vbm13V8cIF+3H1X777riz19XJRUh+lRrJVSKoPWy/AgLRZ81KrcNDUfSpYnIVEVLj09toRLrdomZN0EUnzOVNgOXNaq33DtG5Ylp1v2plqUBfN0uFWbMc56dLZSXCzppjPXwpuPuCRrneoqLibSHeOIoy3lcPZMTL/T/e4acXQjCDaVrcMJs6orLY/3SRV0/rh9LSbItotU4rZDue+NDE7Vnqs6gTjggI7W0hLix0RNkWp23flPI+4bZ9+no4qOfOMO4W3GXk2vd3pRDdg/+6LiyXl39y5InK7u2VbolHpVNTWynklkUg9H+g6dRJwRYWsU/eBYoruNWuAm29OLezV3i75tw8etIMA11wjmUsKCuzvwU10r14t52eK7uH58Y9lH15zDXDrrV63RshlvUaxnePQPjJ66uqAXbskq4f+OubPl5P4ggVDD8+Plb4+u6rjyZOpwiISkQvK0aPSNh2i1YwWRUX2BMbubvFcOrNF6BAwYEfyTHuIKYD0Ym9GgM2LpRvOyKNzeN8c1je91KbgMv83xbDeN9PMuaVlS5dBQ3FGoici8mtGoIeLeKezf4wUN/vHUJHv0azfaeEwLTvmd2u+zvQ4Ozs/bnnYzfU71+WM0qfLROL8Dp37we01bh0P57507jPzf/PYc1pWNFVecbE8198vAvXiRRGdpgXDbb6BRrydUW/n68yiSvrbcNpS9LVmykpzf7hl19F9HQrJ+aWyUlKWzp4tr21qkuficTkXtbfL493ddqVWXaeeV8rK5Lpjetz1eCkpAZYskbkut9wikWwV3Q0Nkrnk3Xfl/0hEotfr19uWPYrusXP6tNTbCAQkuq0T5r0kl/UaxXYOQ/vIyNGT9u7dYstQli6Vk7Z6B8f7M0+dsqs69vXJ45q79sIFEeB1dbaXUf3FhYV2xEzLdJsCW9O46YQl9ZxqJFyjT3qxtizbd+30n7qhF3yzFLebsHGuQy/wTsFkCmankHbuM/18/X8o4eS2z8cLs+2jEcluUW2nTcQpuIZiqNc52+Zss/m5KqBNL7RTUDpHANJ1dJzbZW6TuQ5ndhjTXmGKWCD1f3O7nBFv8zm3/encL8794fZdmh5xzRqivz+n+Db3X16eCO9IxJ5o2NIydJEac98Ndxw4hbdz1Ma5zfq8c26Em+gGbLtNSYlMpJw/X7altVXOL36/jLC1t9vnD+1U6DrVg15SIgJeixjpeSAQkEj3kiWSAvCWW6Twjbb75EnJXFJXJ/8XFQHbtklqVT02KLrHxqOPyjVo7VoZYfCaXNZrFNs5Cu0jI8OyJIK9e7edhsrvl5RVmzbJcOp4o9lCDh0Sy4i2I5mUKNg770hbNNOJXkgLC+2Le2+vfYHT91uWHV3SoXSNeukFWUc29HFNN6cTn4bCtHnohdBZ8ARIta24iTq3iOxIBKW5Prfn3N4zlFgdzsrh7Ayke7/zfrq2OoW52T6n1SHdtjo/w01ID7UdKmLN+86JdYB7KsGh2uaMRjsj0qZNyIyAmwLeKRJNsei2DU5Pv5uodOvcmW0xhbFGpjUPus590Iw0+rl9feJfPndOhKZOKjZ93bo/nBM5tVqqitG2Nttm4Yz6u32PI+kAa7l3M+JtinZdj2nR8ftTf79u6HyQykoJPlRWSts7O+X9zc12ru54XIIAGslWga/nMbXcqF3I57O98IsXSwT7llsk2KH78vBhyVzS0iLtqaqSAjqLF6d+9xTdI+fkSbGTBALAH/3R5KSrHYpc1msU2zkK7SNDk0hI+rw9e2RoFJCT8qpVkl1kvCeM9PTIxeLgQUm9BMiFQaNdx46JF7KtTR5XIVBQYF8oe3rsvLimENKLvIpgvYiq7zkSsYd3NfpkDvmmw7QGaNRT12GKAtMPqu8z16HbOhzpIqL6nDNaab7HKazdRKGzDW7idCghnG47hopqp/tsp/hJ9143UZ1uP5lC2ilyzU6DM2uKikMVpc4osLM9pnA1s3qYkXFzG81tcKZb1M9wil6d7OrWZqeodQpat1vNmFFcLIJLrR5FRakTbDVibaarVCuVbl93t71fYzH5TZ47J0tTU2r7zMi17i/dXv1966ReLTKjthu3kQLnMZQO3S+6H/W1psDW79AUvMpQ5wWdVFpSIhaTmTPlcS1y09UlAQU9T3V02J0JnXgdCIhwLyy026WTmk1P95YtIrqXLJH29ffbmUt0wvi8eSK6tR26byi6h8eyxEpy5oykrr3pJm/bk8t6jWI7B6F9JD3xuGQV2bvXjirn5clEnfXr7Qk440EiIemVDh4Uv7Ve6NS7+N578l21tNhCR+0dgPwfi9lFJkzRoYJXxY45JBuNyq1Z0tucMDgUzlzT5mc5L/zpoqvpHtP3uE0sNd9nCj7zfc5Is7k/gPRD4ZfKUNvnZj1IJ8zTiXbn42770InuQzNNnb7Hzb873H5xboMpiE0x7bSamBYPU/hqFhudaOv04zszfLiJS+d6zMWcaFlYKMKvpMTOElJcbBcWCofl2O/slKWjw75Ve5Z2fNXaofc1naUKbkC2p6ZGUt2Fw/KcRr67uiTareK7vd29HLxGenX+hM9nt1UtYKYdw22C5XAjN+Z3a04eNYW3rkM7SGYWFbffoRMdLausFF93fr7d7s5OObfpfI/OztSJzXrcRCLyHaoNJh63OwolJSK6r7tOJvEtWiTt6u2V0cj9++0RueXLgeuvT62KSNE9PCdOSCrAYFCi217uk1zWaxTbOUZfH/Dd79I+4qSnB3j5ZTk56wW2sFA8gtdcY6fSGw/q60Vgv/mmXHwBe/LiuXMispubUwvGaHltwI6WmanpzFu9QJsXbI2Aq0BQsTBc1hBTSJm5s9MVXTFFr9N+4BTETpFmCkJznc5IOZA6EVLvj0RYjBRnlNZ8XP93E5nmfnCzWZjbpdth7pt0kXHn804Rb3ZQzHWauFk7nNvkFNB6/KioNdPh6Xdr/m9Gpt1GH1T4mFFvZx5sFc8aUdY86PrZeizq5F+NQKv3WaPD2rFQK4OKaK3OqR1NMzqttyqitROqnUDnREwg1XJiRoIBaaNOIiwrs7/DvDx5zcWLMpJ17pxM+Ovudp/oC9j7S79vHanq70+t4Oo2wXI0vwvn8Qykjkrpc9rxGMln6HdWXCwZmyor7e3s6JDzXSwm26XFtMzfjW5vYaGdTlE94ZohZfFiSQN46632RPW2NslccuiQPSKomUvy81PbTtHtjmVJGsDaWrke3nCDd23JZb1GsZ1j/PrXUniF9hGho0ME9iuv2JGpsjLxBK5cmVpC+FLo7BRxffCgXFQB24Pd0CDRA3No1eezxQ0gj2tVOvNiaqbT0l+q6S11E9fD/aLNIXaNgDur1TlvzWimtkHz6poVM53D/GZkzvk5zmU8cIs4m+LfvDVtFk4hqW1XweaMFptRv5FYQpz71C2Sb77fzcbhfI1zcqG5PU7xbD6unl5nejxnxUTzVsWw2hKc2Ui0U6fRZKcH3ElBgS2gCwvtybq6zmRSjuvWVrFmNDaKYOvoSI00m4WU3AoqmfvE6Rk3v3ttq9nx0Pv6W9UOcWurXeBIO7hmhqDqarE0lJRIO3RSc2enTPJT8a3FcJziWzH3h+5z3S/OuRLpRp2GwzlCAaQKYD0/9vUN7+lWtJBURYV0QrQ4T0+PfJc9PfK5fX2yT3RUw/R15+fbARA30f2hD4nonj9fXtPQIJMojx+X/yMREdHr19vnWN0vFN2DOX4c+Kd/kn31R39k23smm1zWaxTbOYSm8gFoH2luFqvIwYN2dKa6Wk6oV1zhbmUYLf39Yg85eFDEtF6k2ttFWJ84IRlFNEKtUWnTW93WZketzGiVZdkRHsDObBAM2nmy9QI43MXPGcXUC7s5ecxteNop5sJhuQiqt1UndrlFeFU0DNe20WCKZcA9wu6MTDqjlGY2CxXTzrzLzgj2cL52J25Ceaj2mK93dgScUWj9Ds1qnloZUzs+zgix89YUugUFdhpG095hVgTt6RlZXnVA1m+K6EjEnlSo0eeODrEXaNlznSToJprdOo+mgHYKZ2enwizKlJ8vi9OGottvTig2O1o6kqSozUOFd1OTXdo8mbQ7An6/7Af1NatVQiOuTU0i+M6elc6E2izMkSz9Pemol/MYcebwdk5SHk1H1u03ZNo9nMJ7JOvWVIjV1dL5UGtafb1sr7axq8s+T2rbNaigtjjt0Og6Fy+WKOztt0tOcEBGDZ95RorwALL/t22TipXmOZ+iOxXLkhLu587JnKUPfcibduSyXqPYzhFoHxHq62XS41tv2ReC2bOBzZtTZ62PFcuSi+PBgzLhsbdXHu/qkovnyZNy4dTJOzohSCOCZgYC5+Qp86KqgiIatbOP6IV1JALWOWktnbh22hackc78/NRiMuZEp6HSlo2FdNFnt//NtgOpXmLzOzZFmznJzpmJwW1/jGS73CLp5v/ma1Q8q0B0TuTTiKBZoMhc9HFTYOrjziUatY83HW3QURAVve3ttqVqKFQAqUhV4aNp3tQWoEWUOjrs//v67EjzcJijLeain2taSgoLZTtNX7ZZWl2j4yqae3vtyYdjQb+XvDzpSOsome4fFbytrXYJd/1srbQaCNjR3tmzU7/rnh4JlmjUu61NvidNM2iKb91XTtuWaW/Rdpm/z7EIb7Nz6xTeGtUfSYdfj9XSUqlSqV5+rbqpgYiurlRft7ZB836HQqmiu7hYgko33yzXvNmzZV1vvgk895x8D4B85gc/aHu+zX1E0S0cOwY89pjs4698ZXznL42UXNZrFNs5gtpHSkrEPjKeHuRs4MwZYNcuuwACIOJ60yY76nEptLba6fqam+Wxvj4ZFq6tldve3tQLr0bMLEsunurX1IueXjDNC5uKBY1cj1TQOm0EbuLauQ4zWgoMLs1uTqo0MySMFTdbh7NTAAy2Zuh7TQuLud+ck+3cPNRuHQy39qWLSjvbb7bZjLKaNgQVf6YFQ4Wz+pT1VsVkUZG7eDYXs3S3itv29tRb9SwrZiTfjNqaKR9NS4RaNMyiRuYxORp0X2nquIICEcvFxfaExooKedzMDGIKZ7WOqIjv7rY7uqNFs4CY+9T5v3MxI8vJpEROT56UHMWnT6cWfdJjqK9PIvgNDfYkaO2g6KTKqirxOM+cKW0oLZXPamyUKK1mOFE/uubi19+k83g1I9KmlUYfG4vwdtqUzPWq8DaF/nCjIOrNrqy00wC2tUmgRGsM6H5yjjYFg3YxLzfRfdttssyaJe156SW5LmjwY/58Ed0zZqS2iaJb9sHDD8uxvWkTsH375Lchl/UaxXYOMFXtI5YlXrNdu+wTpM8nNpFNmyRjwKUQi0mxmUOH5KIKyIlfMw2cPSsXfRUyGplWgd3ebg/Bm78yZ5TWnBBk+k2HwxR92rZ0k+fcXq/CUD2V6vs2fdejOTs4J0C6WVGcwt/5vL7PfC2QWoXQreiNM9rtFNrmY07R71yH08OsGRfUR2pm2DB97CoU1bKgQrK8XMSklvROF4kOBu30jiqY9X5bm3T4Ll60hbSbcFaLkVpA9FgyJ6Ga/nmNWo92xERFT36+HXEuKbGFc3m5bG9JiW1/8vnsCLMpmnUZi+VIfdIjEc36nJknfjzQc8KpUyLYamsHd3T8fvlOmptt8a0jViq+CwokAjt9uojBigrZrz09cq45flxEeFubLb5NgesUufq5zomITsE9FuEN2Oc50+qmYtzsDAyFFv2prJTjKB4Xsdfba7fdrLypBAJ2Z1XTFmqHddEi4I47JNI9Y4a8f/duCUbp/rrySslcUlY2eJ9NZdF95Ajwk5/IOe4rX0mdZDoZ5LJeo9jOcvr6pHhNS8vUsY8kkyKCd++WaAggJ9+VK2Xio5n6aSzrPnlSBPY779ji8/x5uaDW1toz6VXomFkE1IPtzKzhTNGm0WfT8zySX6IpTlUopXuvm5/ZjBbq55uR4ZHiFNBui5uINjEv+qbFw9yWdNtmdiqcEXCnpcP8LHMf6r5QL7qKNi0iZK4nGrUFZWmpHGPl5SISqqpkMaPSTkHX3y9i+cIFe+i8uVl+t62tsqjvV+0eKpg1spxuIqtb58z08JrHotnhcmYj0U6FiueyMtm+8nI7nZ6K1kDAFs5ui0ZgR4tOuh0qymw+n5c3PvMvxpP+fjlPqPg+e3ZwRyIQkPOIiu/WVvmOVXzH4/I9TJsmgnHaNLFIRCJy/Jw+LZHvtja7Q6YTNs3OlaIjXHrfHBkCUn/7o+n0mL9187doBh30PDkUKp5LS+WYy8uTc3tHh71O7Uia7dPfcTRqb5cewwsXAjt2yDWxpkb28fPPA2+8YQdG1q4Vi6FTVE5V0W1ZwPe+J/t+yxbpkEwmuazXKLaznKlkH+nvF6/03r22lSMcllRPGzZc2gmwqUkE9htvyMULkM84cUIulh0ddgRQZ8drhFiziJjps0yBrY8Bg7NxDIcpWkcSiTKtGRqddXpYR+P9NtfrFNFm+5xea2c2Creosun9dqZB0/e4Ra+Hu2+2U20cal/QRb2+KjJLSlIFtIro6moROtGotEOjxyqKenrkIq4T/lQ8t7fLrU4A1Gp6zsmYzsmqOmTu1mkwRwOc+14Xt3zUOnlSI+2FhXbHQCPq+jlmcRWNQKs9arToZMDhBLO5jFd2oEyir0/E98mTstTVDT7OAwHZ35p5RTteeoxZlj3RcMYMiX4vXCivOXdOot466VD93urHN39bznOHs7OqmOeG0US9gdTouQpvvz/1eB8K9XdrJ6+7W35b8bisz8yHbn62jrboZ+flybG+cCHwkY+IvaS6WgInzzwjnRV93ebNIrzNzCW67VNNdL/zDvDTn8q54ytfSc02NdHksl6j2M5iTPvIJz8pJ5VcJBaT1H379slFBJAL87p1coIc68mgu1smUh46ZJdq7+iQiSKamksvELGYLW40pZ8WmlGc0SLFFJGjEdjKcNYQM2qukUptw2hSAprrdItQKxoJNdO8aRv1YqVRc3Mxh7rNi3667RqqTYC9rXpRLSlJrRJYUGDnaq6oEAGtVg61e4TDtr9WRbSKnK4uWyxr5ozOTlsAqZ/ZLaOJM6JsCuV06QbNRSPuznzUZgYN/Q5UuOoEMmdavmRS9r+K6NGMYJg4J2MOF4HWQi9eo9lDdDFzbJv3h3rOvF9UJJ7g2bPltqpqdNH13l4Rbiq+GxpSfwPJpHz/HR1iG2pqsud86HEXDMoxr7aT+fPF9615vY8dk2O1vd2OfOv5yplHP12n24xWj+b8BaR2xp3Hvj6mo3pDoVHrsjJ5b0dHanYnnVdiopmbtA0a6V6wAPid3xGLSVWVBFKeecYeHS0pAbZtA1asGPx9TiXRbVmSbKGhQfKVb9s2eZ+dy3qNYjtLMe0jq1dLrz3X6OqSqP1LL9mToUpKJDXR1VeL8BgtiYRMojx0SC5I6ps8dkwuUhcv2hcinVQDyAlIo5MaCXLaF/R1Y7k4OaPX6d5rimogNWsDYF98RmsJMddtCiQVtCr6zIIigC2qzc81BbX5WmfHxBmRNi/G+r9+bjSamo2ipMS2EWiKORWnzqIsmo1CLRqaIUIjtyqeVciYkwKdtg3nd6BtdaahM59Xu4pOhjSzZpjC2RwJMZ/XdZr70S2rymgIhUbnc9bsJpOBjh6NRPiORCw7xdh4E4mI0DUF+GgCAN3dEjhR8d3UlPq8ZjTSjEc6iqKpAvv67CqM06ZJ9Payy+R30tQkEdyzZ+35ANppVE+16edPN+fBeeyNFuf8CPP3oSNuQ6GjVIWF8vvRXOMaRNDftRmp1/OHZk4xI90f/Shw550SPdfMJVpRuLrazlziZKqI7sOHgccfl332la9MXr2OXNVrAMV21pLL9pG2NrGKvPaafaGsrJST2ZVXpmYGGAmWJUOHhw7JibW7W9Z74oT4Kpua7BO1zoDXi4pOzgHsYXanH9hp8RgpKl6GE+ZOYWeWXTYnNY6UdJ5qfc6s8GdaPszS76YVZqghaOdnOcWoinkVliqsTfuDRkn1veZEROewcixmRwCd4lkX/Q6dFgznotum7TM/29wOzY7grMBo5m3WNmqHwrRu6P61LHvfj+YY9/uHz2DiFNTO4fKxomJtNKJ4OIE81g7EcPj9qZ2ykdx3+1+jx7W1MgLm5k+vqLCF9+zZo4t+d3bafu9Tp+TzTDTHd2enneO7qckedbEsexRi2jTpCMyfL8ecFthqbpbfiYpvncjtltHH2Wl2jrqNVkE4O9/aMdZjabj1aX75SMQ9Su/m6zbrG+hEygULgI9/HLjrLunEHzggk+01sLNggYju6dMHtyHXRbdlAd/+thxX27ZJhHsyyFW9BlBsZyWnTgGPPir3c8k+0tQkObLfeMM+Wc6YIX66pUtHPyTd0SHrOnRIfJDJpJwY331XLjoapdaiMqZlxM364RSmYx1aNSPj6V5nep/dItej+dU6LSEmehEyvd1mUQ+37CjOfeCMtAOD0/mZ26WCUicdanEVzVphWiu0LU6bhxnJMjtHyWRqOkGngFZhCwzOz2xOHlW/sVo3zMleZiRf2+GMyqsP1ynWRiK4NPPJSH3O5pD5cGgHbbSieCiBPJZI50gwR1RGIoSHu+88HseDZFLOW7W1IsDPnpVJsE7CYRG9KsBnzRp5pof2dlt4nzxp544G7POXTri8cEFe39go57+eHtvLHI2K6J87V6K3yaT4x8+ft6tiaqYTHdkxs9fo5ylOW9eldpLMDrD+1oZDzyNm9hOdDGpOPtf1m6NeGulesAD43d8F7r5bjpVdu2Q0VbdnxQqZKFhaOvjzhxLd114r57Zs5a23gJ/9TPbRV786+iDXWMhFvaZQbGcZuWgfOXdOMoscOWKfGBcskAjB/Pmju0DG47KeQ4fsqo719TLpo75eLj4+nz38qmJSS3I7RbBzCHU4oexkJK91CmEzu4kpKkeKmx1EHzejruZFbahUf07/pQpPp8AEUoVuXl6qz9cUrqZAd0amzCIe5mKu3+khN4WUM4JpdiRUeEQitnBOt6iI1u0bSuilO0a1MNCl5HQeqyh2E8ij7aiNhqGiwWOJKE/GxX0i6O62MxdpkRqzCI5SUZFqPZk2bWSdsZaWVPHd0WE/l0yKaFbx3dIiAlpTBsbj9qhRNCojhrNmiZCMxSQIYc5P0Mm9TluVWwdLzztjGeVzW5dz1Gco9DcfDKamCNX3mx0BbaeeN0zR/YlPSAYTyxJryZtvynsCAZkjtHmzu0UoF0V3Mikdj1WrJi9Sn2t6zYRiO8vIFfuInpx277ZnhQPA5ZeLyJ45c3TrOnNGBLZWdWxpkfuaC9vnswsl6Mk4nf3CKZwm4hfiJq416jjaCJFzcp3pWTQn4rn5M52R53RtdBO5ZnRIC5Xk5cmxWViYmgXFzL1rily9iOvnmRFmrbqpmDYLU0TrPtM2mllX0onokQhDZ/o+n8/uPKQTzGbbNOewWShmtGJ5rBUPh8PnG7sQdrvv/K6IjUa/NfJdWzt09Fsj37NmDV/Fz7LEZmKKb7MqaDxui+/ubhHPWminrc32MmuhpYoKEf35+fL6jg5bfGvu964u+xjVTrET51yWSxn9MDvzI1mPim49x5nzbJxtNW1dpuj+1KeAe+6RDsczz8h+BWQ/aeYSt8w5liXfw/PP547onkxyTa+ZUGxnEblgH7EsiTzv3m1nAPH7Zaju2mtlmHOktLSkVnXs6ACOHk2N9vT12R5tt/Ryiltkcjx/GeYFQ8W1isLRXohMAeycEGRGjE17hdkO89btMdPGYX6m2j4qK0UUTJ9ud2LMnNBqw1FLhzkJUCf8advNqJUKNnPSpbND4MxyYtoYhvLkmv9rJ0DzSpvVHrV95nCzc2h7KIGcSX7joe6bGWvI5KOFaszFLfpdXp4a/a6uHrpTY1kSxTY93+pB1jkp3d22+HZmPDFHpPLy7HSRgYCdB9ysaGmK75GeXydLcehvRs8p5giZ85xrzifRzvSCBcBnPiOR7sZGEd0NDfL6khLgAx+QOUTprh0U3aMnl/SaE4rtLCHb7SOJhAzJ7d5tR3VCIRmi2rDB3Q/nRm+vFLQ5eFBOYl1dEhk/elS8iirGtLDGUBkbJvICYApYHQ7XKNBYJhQ5Z/MDg0W3foYpUM2hXTPqPZSw1gtOUZFdza6szE55qJOw/H65KJkp57QNGrVWP7yZU9uMNCn6vblFcnViohn1NrOwBAKpZdHNzCDODogZIRvLdzFShvMbj/b+RPiNSeaQTMp5USPfZ88OzkoCyPHtzHwyVPQ7mRSBqJlOTp+2J3Ralu3r9vvl1hTfHR22J1otYJqjXc8rPT12XvCeHnuy5XD2t9FY8cYD7UwDqecZt0CHWkxUdC9caIvu994Te4nWYpg+XSZRLljg/rkU3aMjV/SaGxTbWcJ//IdM2sg2+0hfn2QV2bfPTq2UlyfDcOvWDT9MCsgJ8b33RGAfOSKC78wZ8WFrsYO+PjnJa3GZoY5q52z48WI8Z+sPJazcxLO+z5nhxCminRlI9KJSViZRs5oauZjGYrZXU+0ThYXyWp/PHl7WMttqDzG31VnBzjmZ0Zz8aVpeNOpsRqLNNHpuy6WK0Uv1F+eK35hkDr29qdaTc+fsKLVJWVnqxMvq6vTHXyIhEyJVfNfW2jauREImSmqEvbdXzrXNzSKoe3ttv7d5vOscCJ9PzhmNjXaaQS3OM5YRvInAnHthjp6lsxNq4EFTBn72s5K95K23xM+s+2rRImD7djl/ukHRPTJyRa+5QbGdBWSjfaSnRzoHBw7YHsLCQoliX3PNyDoLjY12VceLF2Xm/NtvS6RGvb4awR5uQs5ERlLMLBdj+YyhLCzqtXbaPsxJkM5t14uEGfkGRJQWFIgvs6ZGbiMRe2g5mbSjVwUF8r7OThlN0QwF5kQpIHXClOkDNydKatQ5L88eotYLdDrxPJRwdorxsYrikUxwJCRTsCyJfpuZT5qaBp9zQiEZjTIFeGGh+zr7+0XEq/g+e9b+bcdi8tvX37v6vy9ckPOxOdlSR3LUbqaVHDs65PU6j0YtJxM1F2E06JwTn8++hqRrl6bX1JSB994ro8uvvAK8/LI9GfOqq4Bt2yQo5gZF99Dkgl5LB8V2hpNt9pGODoliv/KKPVxZViYnkpUrhy/H3NUlUYODB+Wi0tAg0ezaWhGEak0YSVaFiRLY5iz58cZpdxhOWAODczarGC0qskuPl5XZw76aKkxLlwODI1HOfWxGr3X9+fl2kRlNV5dORKuwHY80bvQbEyJouXZTgKeLfqvwnj07ffQ7HrdLy586JevWTrSWTVcrmGY+0TSDiYT9G1Url2XJ+UFzYuvcmo4OiaJrfm+vo96au9u0vKVrk+bpXrxYRPdNN0ldiLfestelmUvSFYOh6HYn2/XaUFBsZzjZYh9pbpYc2QcP2pGR6mrJLHLFFUNP6unvl9zXahNpapKKjidO2OIvU6Ih441b2jxzgqOiEWOzNLuZkq60VCZTlZXJfb0QWpadQcOybHuIWf5ZozL6mXqh0XVrKfSSEttuohfsykq5MAwlkIfrYBFCxgeNfpv2k6Gi36YAd4t+x2J2aflTp8SCoraL9nY78q0d885OiXrraKZawMJh+d/nk/NFMCjrbm0V4d3SIu8dSzam8cYc6dKUqG4EAnJunTtX7CV33CFzkk6dkuejUWDLFmDNmvTnQIruVLJdrw0FxXYGkw32kfp6OcEcPmyf0OfMkV79okXpI5CWJbaQgwfFJlJXJ+L68GHbNzjayoiZjtNbbfqMdTs1cu1WjEWHPVVQl5bKBVKzBIRC8rxOUOztlQuZdlhMn7fpU1RPtpZDLy0Vi8ncuXIhrqq0UFXSh6r8LpSHO1GALvi6u+Tq2NUlVwcNoVdW2sZuQojnaPTbzHzS0zP4daWlqRMva2oGR797emSSpWY70ewc8bict1tbU6vadnbaj5lBhVDItq1Fo3ZFzLY2e9HUl14pFJ/Pjs4DQ1tMIhHJpHXLLTJh8tQpe45SaalkLlm+fOjrIUV3duu14aDYzlAy3T5y+rSI7HfftR9bvFhE9pw56d/X3i4+7IMHJXp99Kj4sDVC4uXJdbwxM344hbWZPcSZtk8j2AUFEk0uLRUhHI3KhTOZtEc4NPWc5tB1pg8zJ0qq77C4GCgusjCtqAezyzqxZGYXZpZ2oSLSifJIF0qCXShEJ4KxLhHTnZ2jG1bQahnORb0shBDP0NzcZuaTxkZ3e5pGv1WAO4ubdHXJtUA935ppqrfXzs9tpgLV04mOpsXjqZOk8/LseSrt7baA7+72dpKlOZI4VHrDSEQCFVdfLWkB29rs/N0zZ4oQnz8//eeo6H7hBdmvwNQS3dmq10YCxXaGkon2EcsScb17t9379vnEJrJpU/qZ2H19kjnklVfE23bsmKynrW3oyoXZhpmrVSPIZsRaX2NOYNToSWGh7X8uLpbnYzE7stTfbxfl0cmKuj6NVIf8CRSgC4W+LlTkdaEq2onKaBcq87swp6wTs8q7UBHpQrG/E4X+buTnJUc3OTActo3eOouyoEC+4AsXZNFKGW4EAuJ1cYrwior05kZCyIQTi9nRbxXgbtHvkpLUiZfTp6dGvzs67Kj3yZMSRFF7SUuL7dMG5Lyv83D0/1jMniCtOfA1P7jaVtRuMtYJ6eOBWePAic5pKS8X0V1RIVae4mJ5bM0aiYBXV6df/1QV3dmq10YCxXYGYtpHPvWp9Dk8J4tkUuwdu3fbw4aBgEx4vPZaOYE4sSwR1c8+KymSjhyx82IP5YPLFkxhDaSWKNZflBmlNlPaaa5a1axabMHns4umdHfLYsX6kG91oQBdyE92It8SMV3o60SRvwtlIbF2lIa6UJbXg4oK+T40/7VOWkybii4aHSye091X4+VQxOMSNlPxrYumL0iHOZvTXIqLaUkhZJKxLIlMmxMvGxrco9/Tp6dGv83LbGtrqvjWWghaybKlxU4vqiObajnR7Eea0Sgalcc1e5KWotd6Cl4omeEm4avt76qrpKOi+7C4WCZR7tgBXHbZ8PaSqSK6s1GvjRSK7QzDtI9ccw1w663etaW/X+wee/ZIewDRW2vWAOvXDx5S7OmR17/4ogjzY8fs2efZ7r92Cmu9ddo0zAmMkYitV/Pz5YIR77MQ9fUi1NeFYG8n/D1dCMa6EI6LkM63ulCQ7EShTwR2xNeHQMCedKjl0HUypFk2PBwGfAG/nRh2OPFcUDB5CaEtS66MbkJcy326EQqlRsDN+1qlghAy4cRiMrfGFOBmaXilpCR14mVNje19bmmxhfepUxKl7uuzhffFi/ZIp1l4JpGwMyRplcu8PHmNlpJvaZHXZOJIaV6edEpWrpTrw8WL8rjfL3Obrr8eWLZM7ufnD37/VBHd2abXRgPFdoaRCfaRWEwsH/v2yckQkBPA+vUitKNReUz9eseO2en+amttgZ0phQxGi5n1A3DPY22+JuhPojyvG1XRTpSFu1DkF89zXqILeYkuhGKdCMe7EOnvQiTRBX8yMbAeM/ptimotNFNRAZRUBBGdVoiCqgLkVxUgWDqEkNbwz6XS3y+9J3PR9CXOJRi06zrr7M2yspFbQ3p73UV4c/PQ5T9LStyj4QUFjIYTMsFo9NvMfOIW/Q4ERGhq5Hv2bBGHmjnFFN96ilHhraJUBbeK9nhcXtffb0+yDIVsq4naVUaSInYyiURk4vkHPiBtP3FCtisUkse1OuiiRTIHasaM1GkuuS66s02vjQaK7QzCa/tIV5cUoXnpJTtXa0kJsHGjlFXv7ZU26oSYI0fEe33qlJw0u7oy7+Q2EjS4a/qfA1a/2DUgdg0V0EX+LpSFu1AalPsFVieivh4gaQ3YQcxKiUBqNhEtI27l5QH5BYhWFqB0ViEq5hSgap7cL50potpXVGjbN8YqHhOJkYlm52OaJH0oNPm2bpiTaNQW3k4xXlo6fE5ALWnnFOEXLrgbSpW8vPQTNFnakZAJo68vNfOJ1kdwUlycaj1R77eWlj91Shado9LSYve/dZKiWbhL08Nali2+43F5vV6bdPJ9JlyfgkER1x/5iNw/dcrOYb5ggWQ28fkk6LJwoYjvRYvsugi5KrqzSa+NFortDMFL+0hrq0SmX3vNttVWVorPrKBATpp6Mrh4UQT28eO25smOCLaFMPpQhM73Pc8intUPXYjOgcmFRb5ORBAbiDZrBNuZTSRFVPt86PXnozdQgFioEPFwAeJhiTaHSgtQMacA0xcXYsbiAsy5vADTZwdRXj4KJ0QyOXrBrPXrh901lly91DCpiwppZwYRc8ODQVt0axoBjUbrWK/OdHKWwSwqco+Il5XJc0MZGbu73UV4a2v6q6nfn36Cpg7XEELGDbWOmBMvGxoGXy80+u3M+11fb4vv06fllNbaKutsaLAdaJpGUAMmPT3ymPq9AwGJeuspwusJlkogINHrO++U27Y2uc4Ccjp0npZmzLCj3jNnyvbmkujOFr02Fii2MwS1j5SWAl/60uTYR5qaxFv95pu2Jy4cBqZNs71wmibq3XfFLtLaakcRvBfYFvLRjQKkCuYU8az3fV0IWnb6OrcKjU5RnfAF0I0CdFiF6EIBOq0CdPsLRVAHCxCPFCKRV4BktADB4nzUzPBj3jxJ7bRggUQkpk936MZkUnbgaASzOWV/2F1ipYplvdWNBFKn0muddU1+Gwzat5dSqlEPKC1ZaSba1fFgs4Z7JJL6WYFA+qh4WVl6cdzfb4eznMtQ0frCwsG+8MpKGdphukJCxo2+PvF+mwK8q2vw64qKUjOfVFeLwNYJl7W1dpaT5mYpuGNWz9T53MmkneVEB7ZMq4qmU/VSCfl8ct294Qa5dujpuaJCBPbFi7J9JtGoHfVeuFBOcU7RvWqVZArLYOmTQrbotbFAsZ0BnDwJ/PjHcn8y7CPnzskkxtdft/OYBoMydFVaKlqoqUkE9pkzclLq7p4cge1HYkjx7LzvQ+rhm04aDlQE84cHBHO3rwBdvkJ0+wrQ4y9AJwrRaYmo7gkUoj8QQTDkG9CC6oqYORNYOD+JBTNjWDi9Gwtn9GBaUQ9C/SOIOrvVUnZDhbAz0uwsH2m+Vm9Nway3IxHNwaCdwiQvT65WZmjfKTrVSAmk2jM03Yzm6+roSL2SmVV3VJDrGLCuNxIZLMbNz8jLSx8Vd7OoWJa0w02Et7cPvU+cAlxF+UiysxBChsSy5BpkTrysr3ePftfUpE68NFMN1tbalpOmJlmH2hrVvuf32yOxOhFRM5vodU5Hd71SRuXlUnny8svtaP3VV8uId2OjXJdPnBh8KZk+XUR3Xp7Ur6itlccDAYl0Z4Pozga9NlYotj2mrw/49rflZDOR9pFkUiYw/upXUkRGh9IqK+XEFQxK1KC+3i7x29U1PgI7hL4Ri+cohvDipqEH+eiCiOdOFA7c7/IXotcvQlpFdTIgvo2BLCKwUBjsRXGoB8WhHpSE5XZ6STfmVPVgVkUPZpTJMr2kG4WBHvh6e+ySjCNBxaVp0zBnWJr5o1QwJxK2FzoUGp1oBuSMqylKzCuNLjrdPx6XL7mvT7apq0uuOGrAV3uJGtLd/tdqDlqj3RTKFRV2Hm0VyxpN14o8HR2pEyG1rrx2TlSQm/vbFOF63xTYRUXpo+JFRakdh1gsfbrCoXJUppugWVjICZqEXALx+ODMJzpZ36SoKDXy3d8vrz15Um5bWyXqXV8vP2n9Oeup1O+Xx6JRWXp65DrY0mK78LwawS0okKQEV10l2xkKARs2iD0kFJKgmVo66+pS3xuJyHsuXJBt0FhFpovuTNdrlwLFtsdMlH0kmbQnm+zdK4t6wXw+iWIXF8tJraFBTkxNTXbBlKFPMBby0Dsi8VyIToQwRH5lt7bD//67bfHsvN+lohr5sPwB+H0W8nwxFPh7kO/rQRQ9KPR3I5KU/3UpCYlgLgyIqK7I70FZqTUwZ08zgLh+D85os+amcvpPzNdq6TRTMAeDI7cmaJ4rfY9zvf39dnJuvdWp+jockU4kjwSfL7Xdbvd1nNZcnJYNzYXoFOWay1ATj6sg1zaqIDfbqxYV06bS22vPgAoG3cW4+sYDAfnMoSwqPp9sl9sEzYsX3ce9lUgk/QTN4SaFEkIGodFvc+KlW/Tb75eI9+zZco1TG+SpU/I+nXdUVyc2SY1pmA67YFBOD5ot5fx5O/DkRVrBcFjSAm7YINtUWAhs3SrCWU+XnZ0S7T5+XBadP677TVP3asrYNWsyU3Rnul67FCi2PWQ87SOJhJwUTp+WRSeUOGeDl5aKFmhuFpHd1CQ/xr7e5Pvx4ZFZOPwYXXc/jtCQ4tm+n48EAoiiF1GIaM5HN/Lfvx/F+8IZ3cj39ww8nu/rgR/JlKwfGtDVcrnl5Xb58/IyC2VF/dIR0HFDN7uEmudU/JnR5uFEs/k+FeZan13Fo45p6mv0jK6iWYXrpZ7l0wlmnbqfn5+af7ugwK4Rr6JVbSVAajTeFP89PXLmV5F68aJds9ltcW5TKDRYkIfDdvuiUXnM7PioBcUst+mMiutEA+08mJM3VZCrbzwSGdqiEgrJjypdusKhJmhqb84pxN2S6xJC0qLRb1OAu0W/Cwsl8l1VJf93dcnrT58WEVpfL0tnp+3CsyzbrVdcLD/P9nZ5n7ME/WTh94t/e+tWmRdUVQVs3y52EzPOk0zKfjGj3ho30NzmZWXy/g98APjQhzJHdGeyXrtUKLY94lLtI4mEDCOpsK6ttTXZ+fPyfzIWR16iC4He9zNs9Hch2dGF2MVOJDu6EO63xXMUPYP8z8PRi7whxHMB+hBGEgEk4EcI8RQBrSLa/F+XAOwopp5D3CY06qTGSDCBaDCO/HA/CosslJQFUFTsQ2mZH2XlPhQWAeGgIZrVxmCKT3PSYDrbhBlBNoWmuV7TemHmmkomL91aoO1VA7mKZF1Mkay3el/Tnpi5r1Qka/TYbentTf1/uIh4KJSa/7uwMHXyo+57jb43N4sRsbnZngjqXNzCV6YQj0Ts71H95vqZiYT9nailRi0zzsh4b68ttt3EeF6efHZhYfqoeH6+XI3dvOFDTXLNz3ePhpeWcoImISNA62aZEy/Pn08f/a6okP/7+uQUdPq0PRGxqen9Cr6WfWnQwbmyMjmd1NXJ6zUj12RVRdZETtdcI17upUuBD35QUgm60dVlR73ffVfafeqU7CtA1rV+PXDbbcAVV3ibHTVT9dp4QLHtEb/6FfDyyyO3j8TjwLmzFs68G0Pdu11oOinVB0N9XQj3yf1Yswhpq6sLvq4uIBYb6KV3dr5fXWuInrgFnxHbtsVzDBHEEUQS/oHFBwthxF0Fsz5miuaR4IOFIPoRRhw+WLAGPMYB+AOQyYphC3l5FooLkygvSaKsqB+lxUkUl/iQX+BDKGTB52abMAWzimazzq+KwEE7xeGldk5OHNGG+eyJhqZQ1lLpKpRVoBYVyX0tUqPRXG2HRrydQnioZbyvBGb0OZGwx1lHQzCYWmJTJxyqSNaOT1eXbb5sbXXfPh05cK5f26mjEH6/Ha3XSL0KchXjlpUqwE1B7vcPFuDm/+GwbVExRbhO2nSLiOtVz41AIP0ETS8qXhGSRcTjIp5NAe5WsLagQH5Sfr9d0VKtlXV1curRCYk6qKdxhbw8eX1joz3BUgdLJ5pIRCZFrlwpmUxuvllOD+lIJmV/vPsusH+/LK2t8pzPJ4J9yxbxiS9aJKeyySRT9dp4QLHtASn2kU8ksWD6+0PvXV2ydHYi3tqFC6e70HymE63nutDVKGW9/UlbVOhoeGOjLKp3VAv29ADdfQG0J9XfHEU/gkgg+P6tHxZ8sOCDDxb8SCIPsUFR5yBchMww+JFACHH4kUQCASQQeP8TAP/7ojqIBELoQ8QXR8TXh4i/X0R1AIiELUTDCRTkJVBc0I/i/AQKoglEQ/2IBBIIWHH49KymgtkphJ0easCOMOuEwXSi2axAEwik3ldbQzQ6uIKjKZJVhGnkHBBROJIIcrqo7qXg86VOYDTtEypIzYmUui/N/an70ZxY6X+/RLzOOjKtN9q50UmXepyPNJWhEgjYNhL9HszvVCd3dnSIeNUouRm1d+sM6D5xWmTMfaIC3Pxc9ak7Bbn6ltKJ8YIC8TOZUXG1kMTjdlRcBblbJ0IpLnaPhg+Vo5yQKYxliR3EnHh5/vzgWIQOYAWDqdlE6+tFfHd0yE9eo96A/VPv65PX62luMgq9hULy01+6FLjjDuATn7Aj90PR1SWZyX71K8lgonP3Z8wA5swR+81ll4ndZDJOKZmo18YLiu2JQKNxhnjW+/HWTjz3712It3ZhQXUnls2VsSrNa93WJj1NZ7Y0QPRAcTGAUAhNrSG8ezqEuqYQ+hIBxBMB9Cf9iPX50Bf3IWlZCCCJoGHfGO1ERcFCCHGE0fe+KE/CB1l3AP0Dn6HCWV4rIlsFvLymHwEkEPQlEPBZ7+tdC5FgEuFgEpFQEtFIEtFIAuGID6GwH8EQEAj64DNFHmALZvWRqDhUsZhOJJv/q+XAFMkq5nRColmizDzTJBLDR5LHWyQ7Jxe6ZRgxZ/qk62iYIlkXfWwix0GdtpdwOPVK5fS3x+O2QB9pukRF95eKfz1+EglZZ3e3/CY7OwfbaMwUhCaah9zsfOikV03gO1Ae1BgpMS0rsZgdGU8nyNXTrTN2QyF7n/T22ld9N3OqEg675wyvqOAETUIc9PcPjn47s4HqVJtQyBbfra0ivhsa5OeofXmdox0OyylAEzyp8J5ou0lZmYjlm28GPvYxYPny4YunWZYEAX/xC6m7cfGibNP06TKR8ktfmtg2KxTbWcykfnnJJPCNbwxZSvrYMekZh0LAooVJdLX2o72lHx3dQST9AST8IVi+ACyfH5GoHyWlFiJhINYLNDUkcf5cAu3NiYGRc12SSRiOaxW5CQQH4sr9A2LYB7wvhBMDr7NFcz9CkImDusga5V2DseA31qXi2o8k/D45QwUCPgSCPgSCFkJqBYlaCEcCCERDCOWHEIyG4HMKyeFEs9oQ8vNTJ/A5c0Onyw/t5lUez5+DM5OHUxw7s5iYebP1VkWiUyRPJHqlMJdQaPBjuiSTtojVRbOhjFYom+Tl2RYa3VeKjmboD0BHOUYTMdf3m2kYLUv2r7ktZkYXPWbcOlNOm5FGw/W4VK+5c36A5hzXtpgjDqYYj0ZlVpNOqNTP0NESTTKcrqPn84mAd4uG6/oIIQPebxXgzui3FrHV1IEXL9oVKrU8vEaJNRkVkJo4Saf/TBR5eSKW164F7rrLtoYM1d82y8AfPy6nk+Ji4H/+z8nxclNsZzGT+uVZFvD//X/yq9Mqee+LrL64D+fqfHjrLSAWs1BeZiEvAiT8ISQC4lXNjyRQWtiPaDgBqz+B1osJXGjoR29nArHuBOK9CST6+uHr70fAikMkcBIBWPANiOoEQkgMRKB974th+R/v/3VeVK2UKLSI5oTh0JaLtzyqMW3/gMyOI4R+fxhWKAxfJAx/NIJAfgSFpSGUVIZQUBJAfmEA0cIAIgVB+IKB1BRvpnhWUWLaPNLlotah/HTRyNF+dyrCTcuAUyCbMzSd73dWZZyM6erpBPBYF7PM2nigxW1UfDvFuNv/Q3RWh0Xb7xS95veiaRv7+1MtPukwPf763Wvnx7SQODPLOL97FcYqyhWfz47Cm78D3X/a2dJjPBx2j44XFkoZOlOIazu7u4e+skej6dMVcoImmeL099s1KFSAm9FvnRfV0yM/1+Zme5S6tVXEt54O9GdsCm7tc08E2sdetQrYvBm48kqJdi9cmP5Ub4ruhQvFxz0ZUGxnMZMe2f7iFwEAfX0WOtuT6GpLoLsjgVhXP1ouJoD+BAry+lGUn0BeMIFoOI5w0ILPstDb50Nbuw89vT7E+4B4v6ynPw7AsgYEtB9J10izzxFhdkvPp/K8fyCeLVI8Lu5pxBB+f4mgD3noQQQxRNCPMACJUIdDForybS91eXE/Ssp9KCoNoqDIj2hhAHlRP/yBYUSpdkhGezE3LQfmkkymF8iAu2hXEWYK7KG83GNFp7KPRfwO9VwuRiM1heBoBfpoT2UqvNXvb1pwzA6TimezwJDzKmVOXNXxYvMqqhUydI6B2Rkzo+qmz13bousHBo/y6HZop1UFu1taQzM7jAp/tRFpxN1JICAec7cJmnl5o9vfhOQQmgpQBXhdnR39TibtDKi9vRIhbmuTwaeBZAUJ99OMnpYmgmBQvNjXXSdR7mXLJAPJ/PnuwlsvkZPV36bYzmIm88vr7bHQuulmxDrjiPfr0ekDYKGrG+iPA9GIhZkzROL2xZLo6rTQ3e1LvUYnfEhaPiSBgcmLeusbkNkWkvC975oOvH8/+L5gjqAXEfQh8r6DOijRZ8j4UcCYIhkwbn2wBgQ4/H74A36Z01XoQ2EhUFpioaTYQkkxkF8cRLQoiLyiEHyhNILZWYDFTSBrJNktegwMFhvmBEen3WS8RPJIhO5oFy/zKU0FNINIOjtLOoE+0pEHM0qsthLzeDOPde1Emp5ujaCblTN1gqXObNb1q03FTCtpHt+mINcKnqYlxhTj5u/I/L2Y9hTttOl8hVDIHjXS12rdaJOiIvdMKSUludkJJGQINPptCnBNNJRMijhvaZGod0uLPW2kp2dwxljzsqmngfEmEhHBvWGD1PhYvlyE97x53g1mUWxnMZP55SUTFt5dcTes/iQsnw95kfcTDfiAhnqJUOfnW+jqsNDTLWI7EU/CSgL9lm3eULe07Zx+XwAPTDsEAB/8sAbEskxAlHi1im81kJj0pziz5T4CIfhDASn8UppAVVkCpcUJlBUlUJSfQDQiUXhf0kUkD+U71ufNi7xTIJuT2EaLemDH20ZBoTA1sCwRlCMV57oMJ9CdwlzvqxjW15j53tXbr8IcsK+4sZg9yVo95Bo5N9ejYtw5euRc1KZl/nbNCqehUKpXHrBHZvR36/PZPnKdUKyEQunTFQ43U4uQHKKjIzXzSV2d3Udub7fzemv2EnOKiE5DUdGtP/WJIBKRtH9XXy02k5UrRXjPmTO5wptiO4uZbM9269bbEbTi8IeDaG4P4kJzAPUNPvT2+ZGwfEgk/UgkYbioxUkdfN/cocLZGohjyxREWyQHB6LPagGRddm/iMDApMfE+y5rewn7EwiHgGiBDyUlQGGRbyDNcaQgiHA0CH/IJWrsdjuaX+Foo8Qjeb1z0hwhE43bBMqRCPR0KQhUmDsnwJoC3RTPmknHtLLoVVij4qYFR20rgD0q5Jz7YE401Xaak0Y1E4v5mzSzvejIlLZJ7Spm9Fw7AiUl7t7wggL+lknOk0gMjn63tmIgG9mFC/KY5uxWu4meIpyng4lA0whefrlEvTdvliqTTP13aVBsjyNNjRZOXnUHEl29SPb1S/KCRAD9VgDJFCe1L0Uoa/TZjEKbglkXRST0QDI919t+BAF/EJGCAEorgpgxO4DSyiDKKgMoLPYjPz+NVjbzDo9ntJiTrMhURQX1aAW6c0Kj6bM2Bbnzf/WhqzDX355Gup2pH50FnsxLgpk1Rce5NQ+aLvo5msVGhbeZClEj42ZVU632GQ4PPUGTFiySw3R0pGY+qauzfd4NDcCZM3KrfWedBmIK74kiGJQBqXPnmI3kUmHS1XHE7wc6LvTBn+iXa937EWsfEgMi2Ho/S3ViCKGc7tZCqmAVj3YYfQgj4Q+jsDyMWQvCWL5KbstrwiiuDCMQHaW3mBEmQsYPswNbWjry95kCfSTivKcnNdmvXpXdBLnzMY166+RQM6+ohtX0Cq/j2uaE495e+30q2p1i3PSdq6VMnzcLQxUXiyDXCqvTprnbUqLRCfm6CJlMiookinz55fJ/IiHi2sx80tgoEfDaWvv/ri775zlRia/6+yXartNGyNih2B5Hurp9eNVaCb/Vj35DKCfhHxDFQy2SEWT41yX8YUybFcb12/245RbJo1ldTTskITlFKCS2i9HUTNZqnSMR6GYudDPiPVTho97eVPFtesFNcW7O7tLJlk7jqZnqwMw777Sv5OenivCiIrt65qxZcvJzTtDkSBrJUgIBKUozYwawbp081tmZaj05eVLsKKdPy3Lhgj0YphHv8UJtLOHw+K1zKkKxPY4cPw78beL+lIhzH8LvZwEZe7S4slJS9XzqU8D69VLXghBCBhEMihAdzRCsWVlzJBH0jg5Z0gnyvj7bN67RdtODbvrDVZSrSHcbFzej5Cqidd5IOCxivLhYRg1KSsR6MmeO5DObPdsuBFRRQcVAspLCQinFvnSp/K/RbxXgx47JcuKE2E6am+2c3+MhvCey+M5UISvE9j/8wz/gG9/4Burr63HVVVfh7//+77F27VqvmzWI1lagDjMvaR3RqMwG/sQngBtukGsG09kSQiaMQMCOGI+UkRYram+3q3s4BboWBNJMK729g73nal0xJ3KaEzydmFVjNbOKRsZLSyUSvnAhsGSJ5D2bPVuEeGEh7XMkazCj3yqFzOj3kSPASy8BR4+K+G5pSa2LNVo6O0c3wEYGk/ETJH/605/iU5/6FL773e9i3bp1+Na3voXHH38cR48exbRp04Z9/2Qa7m++Gfj1r0f+ep9Pgi5btwJ33w1s2iTlVemNIoTkHMMVK9JExK2tItDb2uSxnh67GojmR9McaWbecw3jORMTa2RcMaPkmkdcq2/Omyc5z9aulfrW1dVD17cmJENJJm3v9xtvAM8/D7z2mvzf3T064d3SMrrpJmMllydIZrzYXrduHdasWYP/+3//LwAgmUxi9uzZuP/++/Hnf/7nw75/Mr+8j3wEePzx9M/7fMDMmcAHPyjiesMGKc7GgAohhLiQTNoRcKeVxawQ0toqyqKxUR5rb5fXqCfd9JiPNHeaObkzGhW1UVMzOosOIRlEX7/8HFpbgYZ6uY3FgaF+CXWowSe7fig1QyYYim2P6OvrQ35+Pn72s5/hzjvvHHj805/+NFpbW/Hkk08Oek8sFkMsFhv4v729HbNnz56UL+/IEXtGsTJtGnDTTeK3XrdOJtcTQgiZIJzFijo6RIBfuGDnUjt7VvKZNTTYFpdYzPaSZ+5lkZBxI2UAKM1rehFBvLVnUmwkuSy2M3p87MKFC0gkEqiurk55vLq6GkeOHHF9z0MPPYS/+qu/mozmDWLpUolcV1UB3/iG2EOYIYQQQiYRrW6ZlydDhyNBixV1dIgAP3YMOHQIOHwYOHUKaGqS53p6KMRJzuBzuZ98vyxA4v2kQe0oQg392pdMRovtsfDggw/igQceGPhfI9uTxdmzk/ZRhBBCxgOfT4ruRCIyYfKKK4C77vK6VYRMOn4AEeP//navWpJbZLTYrqysRCAQQENDQ8rjDQ0NqKmpcX1PJBJBJBJxfY4QQgghhIyMHHNzeEZGZ/4Ph8NYvXo1nn322YHHkskknn32WWzYsMHDlhFCCCGEEDI8GR3ZBoAHHngAn/70p3HNNddg7dq1+Na3voWuri589rOf9bpphBBCCCGEDEnGi+3f+Z3fQVNTE/7rf/2vqK+vx8qVK/Gb3/xm0KRJQgghhBBCMo2MTv03HuRyKhlCCCGEkFwgl/VaRnu2CSGEEEIIyWYotgkhhBBCCJkgKLYJIYQQQgiZICi2CSGEEEIImSAotgkhhBBCCJkgKLYJIYQQQgiZICi2CSGEEEIImSAotgkhhBBCCJkgKLYJIYQQQgiZICi2CSGEEEIImSAotgkhhBBCCJkgKLYJIYQQQgiZICi2CSGEEEIImSCCXjdgorEsCwDQ3t7ucUsIIYQQQogbqtNUt+USOS+2Ozo6AACzZ8/2uCWEEEIIIWQoOjo6UFJS4nUzxhWflYtdCINkMom6ujoUFRXB5/NN+Oe1t7dj9uzZqK2tRXFx8YR/HiFewuOdTCV4vJOpxGQf75ZloaOjAzNmzIDfn1su55yPbPv9fsyaNWvSP7e4uJgnYzJl4PFOphI83slUYjKP91yLaCu51XUghBBCCCEkg6DYJoQQQgghZIKg2B5nIpEIvva1ryESiXjdFEImHB7vZCrB451MJXi8jx85P0GSEEIIIYQQr2BkmxBCCCGEkAmCYpsQQgghhJAJgmKbEEIIIYSQCYJimxBCCCGEkAliTGJ73rx58Pl8g5b77rsPAFBfX49PfvKTqKmpQUFBAVatWoV/+7d/S1nHsWPHcMcdd6CyshLFxcXYtGkTnn/++YHnH330UdfP8Pl8aGxsHHjdCy+8gFWrViESiWDRokV49NFHR9XWoWhubsb999+Pyy67DNFoFHPmzMEf/uEfoq2tLeV1Z86cwS233IL8/HxMmzYNf/qnf4r+/v6B58+fP4+Pf/zjWLJkCfx+P77yla8M+qzrrrvOtZ233HLLwGueeOIJfOhDH0JFRQV8Ph8OHjw4pvb+4R/+IVavXo1IJIKVK1cOasvRo0exbds2VFdXIy8vDwsWLMBf/MVfIB6PD7vPAKC7uxsPPvggFi5ciLy8PFRVVWHr1q148sknR/T+TIPH+/gf7wDwrW99a+CzZs+eja9+9avo7e1Nec0//MM/YN68ecjLy8O6devw0ksvpTz/8MMP47rrrkNxcTF8Ph9aW1tTnj916hTuvfdezJ8/H9FoFAsXLsTXvvY19PX1pbzuX//1X7Fy5Urk5+dj7ty5+MY3vjHs/lISiQS+/vWvY+nSpYhGoygvL8e6devw/e9/f8TryCR4vGfu8f6FL3wBCxcuRDQaRVVVFe644w4cOXIk5TU8v48OHu/eHO8vvvgibrvtNsyYMQM+nw+/+MUvBq1jvDQPIN/BihUrkJeXh2nTpo1onymPPPIIrrrqKhQWFqK0tBRXX301HnrooRG/HwBgjYHGxkbr/PnzA8szzzxjAbCef/55y7Is64Mf/KC1Zs0a68CBA9aJEyes//E//ofl9/ut1157bWAdixcvtm6++Wbr0KFD1rFjx6wvf/nLVn5+vnX+/HnLsiyru7s75TPOnz9v3XDDDdbWrVsH1vHee+9Z+fn51gMPPGC9/fbb1t///d9bgUDA+s1vfjPitg7Fm2++ad19993Wv//7v1vHjx+3nn32WWvx4sXWjh07Bl7T399vLV++3Nq+fbv1+v/f3v1HRVXn/wN/As4Iw49lJyEBQVKDBQ/pkT0EpWFRgKVR6pLpmq5Fau6CZT/W9niwdRdOVriL65oloiIK6hZ1YtLAn8iCu9hgSmQODK5Qq4glIsbP5+cPvszXcQYZxgFxfT3O4Y+593Xf93Xf58Xlfd9z70WrpUaj4bBhw7h8+XJDjF6vZ2JiIrds2cLx48czKSnJZF8NDQ1GeZ48eZIODg7MzMw0xGzdupVvvfUWP/zwQwKgVqvtc74k+bvf/Y5/+9vfOHfuXI4bN84kl6qqKm7atInl5eWsqanhJ598Qk9PT6NjupG5c+cyICCA+fn51Ov1LCsrY3p6OjMyMizafrCRerd9vWdnZ3Po0KHMzs6mXq/n3r176eXlxZdfftkQk5OTQ6VSyU2bNrGiooIJCQl0d3fnuXPnDDFr1qxhamoqU1NTCYA//PCD0X4+//xzzp8/n3v37mVVVZWhlpctW2aI0Wg0HDJkCNevX8+qqip+9tln9PLy4tq1a3vtM5JcsWIFPT09uXPnTlZXV7O8vJwbN27kO++8Y9H2g43U++Ct9w0bNvDQoUPU6/U8duwYp02bRl9fX7a3txti5PzeN1Lvt6beNRoN//CHP/Cjjz4iAH788ccm7dhqzPPee+/R29ub2dnZ1Ol0PH78OD/55JNe+4wkMzIyqFKpuHHjRp4+fZonT57k9u3b+eabb1q0fTerBtvXS0pK4ujRo9nZ2UmSdHZ25tatW41i1Go1P/zwQ5JkfX09AfDw4cOG9Y2NjQTAgoICs/s4f/48FQqFUbuvv/46x44daxT3zDPPMCYmxuJc+2rnzp1UKpVsa2sj2VUw9vb2/O9//2uIWb9+Pd3c3NjS0mKyfWRkpNnivN6aNWvo6urKpqYmk3V6vd5s4VmS77WSk5PNnozNefnllzlx4kSLYn/2s59x8+bNFsXejqTeb77elyxZwkceecRo2SuvvMIHH3zQ8DksLIxLliwxfO7o6KC3tzdTU1NN2jtw4IDZwbY5q1ev5j333GP4/Oyzz3LmzJlGMenp6RwxYoRF/TZu3DiuXLmy17jbldT74Kv3bsePHycA6nQ6k3VyfreO1PvA1Pu1ehpsd7uZMc/Fixfp5OTEwsLCXrc1Jy4ujvPnz7dq22vd9D3bra2t2LZtGxYsWAA7OzsAwAMPPIDc3FxcvHgRnZ2dyMnJwU8//YTJkycDAO666y4EBgZi69atuHLlCtrb27FhwwZ4enoiNDTU7H62bt0KlUqFmTNnGpaVlJTg0UcfNYqLiYlBSUmJxbn21aVLl+Dm5oYhQ4YYcggJCcHdd99tlENjYyMqKiqs2gcAZGRkYNasWXB2dra6DXP5WkOn02HPnj2IjIy0KH748OHQaDS4fPmy1fscrKTebVPvDzzwAI4dO2b4mry6uhoajQaPP/64Ifdjx44ZHa+9vT0effTRHo+3L8ekVqsNn1taWuDo6GgU4+TkhNraWpw5c6bX9oYPH479+/ejvr7+pvIajKTeB2+9X7lyBZmZmbjnnnvg6+vb52PtJuf3/0/qfWDqvT9df0wFBQXo7OxEXV0dgoKCMGLECMTHx+Ps2bMWtTd8+HCUlpZa9Lfghm52tJ6bm0sHBwfW1dUZlv3www+Mjo4mAA4ZMoRubm7cu3ev0XZnz55laGgo7ezs6ODgQC8vL6OvZa4XFBTExYsXGy279957mZKSYrQsPz+fANjc3GxRrn1RX19PPz8/o68PEhISGB0dbRR35coVAqBGozFpw5KZ7aNHjxIAjx49ana9pVd55vK9Vm8zHxERERw6dCgB8MUXX2RHR8cN99ft0KFDHDFiBBUKBX/5y19y6dKlPHLkiEXbDnZS77ar97/+9a9UKBQcMmQIAXDRokWGdXV1dQTAf/7zn0bbvPbaawwLCzNpy9KZ7dOnT9PNzY0ffPCBYdmGDRuoUqlYWFjIjo4Onjp1ir/4xS/M7t+ciooKBgUF0d7eniEhIVy4cKHZvrgdSb0Pvnpft24dnZ2dCYCBgYFmZ7VJOb9bQ+p9YOr9erDRzLa5Y0pNTaVCoWBgYCD37NnDkpISRkVFMTAw0Oxs/fW+++47hoeHEwADAgI4b9485ubmWvz70u2mZ7YzMjIwZcoUeHt7G5atWLECP/74IwoLC1FWVoZXXnkF8fHxOHHiRPcAH0uWLIGnpyeKiorwr3/9C0899RSmTZuG77//3mQfJSUlqKysxPPPP2/zXC3V2NiIJ554AsHBwVi5cuVN5dGbjIwMhISEICwszOo2bJFvbm4uvvzyS2zfvh35+fl49913LdruoYceQnV1Nfbt24eZM2eioqICkyZNwqpVq6zKYzCRereNgwcPIiUlBX//+9/x5Zdf4qOPPkJ+fn6/1khdXR1iY2Pxq1/9CgkJCYblCQkJ+O1vf4upU6dCqVQiPDwcs2bNAtA1u9ib4OBgnDx5EqWlpViwYAHOnz+PadOm4YUXXui3YxkoUu+2Yct6nzNnDrRaLQ4dOoSAgADEx8ebPGhpCTm/m5J6t41bcX7v6Zg6OzvR1taG9PR0xMTEIDw8HDt27MDp06eNHmLtiZeXF0pKSnDixAkkJSWhvb0d8+bNQ2xsLDo7Oy1PsE9D8+vU1NTQ3t6eeXl5hmU6nY4AePLkSaPYqKgoLly4kCRZWFhIe3t7Xrp0yShmzJgxZu9PW7BgAcePH2+yfNKkSSZXVZs2baKbm5tFuVqqsbGRERERjIqK4tWrV43WrVixwmT2oLq6mgDMXtn2NrPd1NRENzc3/uUvf+kxprervBvle62+3NOXlZVFJycnowdx+mLVqlVUKBQWXUkOVlLvtqv3iRMn8tVXXzVa1l1jHR0dbGlpoYODg8lsx3PPPccnn3zSpL3eZrbr6up47733cu7cuT3OSLS3t7O2tpYtLS3UaDQEwPPnz5uN7U1WVhYBsLq62qrtBwOp98Fb791aWlqoUqm4fft2k3Vyfu8bqfeBq/fr4SZntm90TJs2bSIAnj171mi5p6en0TecfVFUVEQA3L9/v8Xb3NTMdmZmJjw9PY1eT9fc3AzAdEbIwcHBcBXQU4y9vb3JlUJTUxN27txp9iowIiIC+/btM1pWUFCAiIgIi3K1RGNjI6Kjo6FUKvHpp5+a3NsZERGBEydOGL2+p6CgAG5ubggODu7TvgBg165daGlpwa9//es+b2tJvtbqvjrs05XcNYKDg9He3m7VDMxgIfVuu3pvbm4222dA10yRUqlEaGio0fF2dnZi3759Zo/3Rurq6jB58mSEhoYiMzOzx9lqBwcH+Pj4QKlUYseOHYiIiICHh0ef9tWtuy+uXLli1faDgdT74K93dr3kAC0tLRbnYo6c36Xeu3MYiHq3pd6O6cEHHwTQ9crLbhcvXsSFCxcwcuRIq/Zp1fndqmE9u56U9vPz4xtvvGG0vLW1lWPGjOGkSZN49OhR6nQ6vvvuu7Szs2N+fj7Jrvtq7rrrLk6fPp3l5eU8deoUX331VSoUCpaXlxu1t3HjRjo6Opqdsep+Vc5rr73GyspKrlu3zuRVOTfKtTeXLl3i/fffz5CQEOp0OqNX7nTPAHS/Kic6Oprl5eXcs2cPPTw8TF6jpNVqqdVqGRoaytmzZ1Or1bKiosJknxMnTuQzzzxjNp+GhgZqtVrDfVw5OTnUarWG1wtZki/Zdd+qVqvlwoULGRAQYMite1Zi27ZtzM3N5ddff82qqirm5ubS29ubc+bMsajfIiMj+f7777OsrIx6vZ75+fkMDAw0eTr5diL1btt6T05OpqurK3fs2MHq6mp+8cUXHD16NOPj4w0xOTk5HDp0KDdv3syvv/6aL774It3d3Y2elP/++++p1WoNr4Y6fPgwtVotGxoaSJK1tbUcM2YMo6KiWFtba3RM3err67l+/XpWVlZSq9UyMTGRjo6OPT4zcb0ZM2YwLS2NpaWlrKmp4YEDBxgeHs6AgACzbwG6HUi9D756r6qqYkpKCsvKynjmzBkWFxdz2rRpVKvVRq8HlPN730m9D3y9X7582dAOAKalpVGr1fLMmTOGGFuNeeLi4jh27FgWFxfzxIkTnDp1KoODg9na2tprvy1atIh//OMfeeTIEdbU1LCkpIRPPPEEPTw8eOHCBYv73+rB9t69ewmAp06dMln37bffcvr06fT09KRKpeJ9991n8uqcf//734yOjqZaraarqyvDw8PN3oAfERHB2bNn95jHgQMHOH78eCqVSo4aNcrovdSW5Hoj3V9Nm/vR6/WGuJqaGk6ZMoVOTk4cNmwYly1bZvJH1lwbI0eONIr55ptvCIBffPGF2XwyMzPNtpOcnNynfCMjI28Yk5OTwwkTJtDFxYXOzs4MDg5mSkrKDW9JuVZKSgojIiKoVqvp6OjIUaNGMTExsU+FOdhIvesNcbao97a2Nq5cuZKjR4+mo6MjfX19+dJLL5n8EVq7di39/PyoVCoZFhbG0tJSo/XJyclm99XdLz39zlw7z1BfX8/w8HA6OztTpVIxKirKZD838sEHH/Dhhx+mh4cHlUol/fz8OH/+fNbU1FjcxmAj9a43xA2Weq+rq+OUKVPo6elJhULBESNGcPbs2fzmm2+M2pDze99JvesNcQNV7z3lM2/ePEOMrcY8ly5d4oIFC+ju7k61Ws2nn36a//nPfyzqt927d/Pxxx+nl5cXlUolvb29OWPGDH711VeWdj1J0u7/dZwQQgghhBDCxm76bSRCCCGEEEII8+7owXZ2djZcXFzM/owdO/ZWpzdo9dRnLi4uKCoqutXpiR5IvVtn7NixPfZbdnb2rU5P9EDq3Tpyfr89Sb1bZ8qUKT32W0pKis32c0ffRnL58mWcO3fO7DqFQmH1k6r/63Q6XY/rfHx84OTkNIDZCEtJvVvnzJkzaGtrM7vu7rvvhqur6wBnJCwh9W4dOb/fnqTerVNXV4erV6+aXadWq43+2/DNuKMH20IIIYQQQvSnO/o2EiGEEEIIIfqTDLaFEEIIIYToJzLYFkIIIYQQop/IYFsIIe4wdnZ2yMvLu9VpCCHEHUEG20II0Q/q6+uxePFi+Pn5YejQoRg+fDhiYmJQXFx8q1MTQggxgIbc6gSEEOJ/0YwZM9Da2ootW7Zg1KhROHfuHPbt24eGhoZbnZoQQogBJDPbQghhYz/++COKiorw9ttv4+GHH8bIkSMRFhaG5cuX48knnwQApKWlISQkBM7OzvD19cVLL72EpqYmQxubN2+Gu7s7PvvsMwQGBkKlUmHmzJlobm7Gli1b4O/vj5///OdITExER0eHYTt/f3+sWrUKzz77LJydneHj44N169bdMN+zZ88iPj4e7u7uUKvViIuLQ01NTb/0jRBC3GlksC2EEDbW/R/I8vLy0NLSYjbG3t4e6enpqKiowJYtW7B//368/vrrRjHNzc1IT09HTk4O9uzZg4MHD+Lpp5+GRqOBRqNBVlYWNmzYgN27dxtt984772DcuHHQarX4/e9/j6SkJBQUFJjNo62tDTExMXB1dUVRURGKi4vh4uKC2NhYtLa22qZDhBDiDib/1EYIIfrBP/7xDyQkJODq1auYMGECIiMjMWvWLNx3331m43fv3o1FixbhwoULALpmtn/zm99Ap9Nh9OjRAIBFixYhKysL586dg4uLCwAgNjYW/v7+eP/99wF0zWwHBQXh888/N7Q9a9YsNDY2QqPRAOh6QPLjjz/GU089hW3btuFPf/oTKisrYWdnBwBobW2Fu7s78vLyEB0d3T8dJIQQdwiZ2RZCiH4wY8YMfPfdd/j0008RGxuLgwcPYsKECdi8eTMAoLCwEFFRUfDx8YGrqyvmzp2LhoYGNDc3G9pQqVSGgTbQ9e/h/f39DQPt7mXnz5832ndERITJ58rKSrN5Hj9+HDqdDq6uroYZebVajZ9++glVVVU32w1CCHHHkwckhRCinzg6OuKxxx7DY489hhUrVuCFF15AcnIyJk+ejKlTp2Lx4sX485//DLVajSNHjuD5559Ha2srVCoVAEChUBi1Z2dnZ3ZZZ2en1Tk2NTUhNDQU2dnZJus8PDysblcIIUQXGWwLIcQACQ4ORl5eHo4dO4bOzk689957sLfv+oJx586dNttPaWmpyeegoCCzsRMmTEBubi48PT3h5uZmsxyEEEJ0kdtIhBDCxhoaGvDII49g27Zt+Oqrr6DX67Fr1y6sXr0acXFxGDNmDNra2rB27VpUV1cjKyvLcM+1LRQXF2P16tX49ttvsW7dOuzatQtJSUlmY+fMmYNhw4YhLi4ORUVF0Ov1OHjwIBITE1FbW2uznIQQ4k4lM9tCCGFjLi4uuP/++7FmzRpUVVWhra0Nvr6+SEhIwJtvvgknJyekpaXh7bffxvLly/HQQw8hNTUVzz33nE32v2zZMpSVleGtt96Cm5sb0tLSEBMTYzZWpVLh8OHDeOONNzB9+nRcvnwZPj4+iIqKkpluIYSwAXkbiRBC/A/x9/fH0qVLsXTp0ludihBCCMhtJEIIIYQQQvQbGWwLIYQQQgjRT+Q2EiGEEEIIIfqJzGwLIYQQQgjRT2SwLYQQQgghRD+RwbYQQgghhBD9RAbbQgghhBBC9BMZbAshhBBCCNFPZLAthBBCCCFEP5HBthBCCCGEEP1EBttCCCGEEEL0ExlsCyGEEEII0U/+D0YNmg8wM3DMAAAAAElFTkSuQmCC\n"},"metadata":{}}]},{"cell_type":"code","source":[],"metadata":{"id":"POBebuidc_pk"},"execution_count":null,"outputs":[]}]}